Files
linux/arch/s390/kernel/perf_pai.c
Heiko Carstens c3d17464f0 s390: Remove KMSG_COMPONENT macro
The KMSG_COMPONENT macro is a leftover of the s390 specific "kernel
message catalog" which never made it upstream.

Remove the macro in order to get rid of a pointless indirection. Replace
all users with the string it defines. In almost all cases this leads to a
simple replacement like this:

 - #define KMSG_COMPONENT "appldata"
 - #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 + #define pr_fmt(fmt) "appldata: " fmt

Except for some special cases this is just mechanical/scripted work.

Acked-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2025-11-24 11:45:21 +01:00

1231 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Performance event support - Processor Activity Instrumentation Facility
*
* Copyright IBM Corp. 2026
* Author(s): Thomas Richter <tmricht@linux.ibm.com>
*/
#define pr_fmt(fmt) "pai: " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/perf_event.h>
#include <asm/ctlreg.h>
#include <asm/pai.h>
#include <asm/debug.h>
static debug_info_t *paidbg;
DEFINE_STATIC_KEY_FALSE(pai_key);
enum {
PAI_PMU_CRYPTO, /* Index of PMU pai_crypto */
PAI_PMU_EXT, /* Index of PMU pai_ext */
PAI_PMU_MAX /* # of PAI PMUs */
};
enum {
PAIE1_CB_SZ = 0x200, /* Size of PAIE1 control block */
PAIE1_CTRBLOCK_SZ = 0x400 /* Size of PAIE1 counter blocks */
};
struct pai_userdata {
u16 num;
u64 value;
} __packed;
/* Create the PAI extension 1 control block area.
* The PAI extension control block 1 is pointed to by lowcore
* address 0x1508 for each CPU. This control block is 512 bytes in size
* and requires a 512 byte boundary alignment.
*/
struct paiext_cb { /* PAI extension 1 control block */
u64 header; /* Not used */
u64 reserved1;
u64 acc; /* Addr to analytics counter control block */
u8 reserved2[PAIE1_CTRBLOCK_SZ - 3 * sizeof(u64)];
} __packed;
struct pai_map {
unsigned long *area; /* Area for CPU to store counters */
struct pai_userdata *save; /* Page to store no-zero counters */
unsigned int active_events; /* # of PAI crypto users */
refcount_t refcnt; /* Reference count mapped buffers */
struct perf_event *event; /* Perf event for sampling */
struct list_head syswide_list; /* List system-wide sampling events */
struct paiext_cb *paiext_cb; /* PAI extension control block area */
bool fullpage; /* True: counter area is a full page */
};
struct pai_mapptr {
struct pai_map *mapptr;
};
static struct pai_root { /* Anchor to per CPU data */
refcount_t refcnt; /* Overall active events */
struct pai_mapptr __percpu *mapptr;
} pai_root[PAI_PMU_MAX];
/* This table defines the different parameters of the PAI PMUs. During
* initialization the machine dependent values are extracted and saved.
* However most of the values are static and do not change.
* There is one table entry per PAI PMU.
*/
struct pai_pmu { /* Define PAI PMU characteristics */
const char *pmuname; /* Name of PMU */
const int facility_nr; /* Facility number to check for support */
unsigned int num_avail; /* # Counters defined by hardware */
unsigned int num_named; /* # Counters known by name */
unsigned long base; /* Counter set base number */
unsigned long kernel_offset; /* Offset to kernel part in counter page */
unsigned long area_size; /* Size of counter area */
const char * const *names; /* List of counter names */
struct pmu *pmu; /* Ptr to supporting PMU */
int (*init)(struct pai_pmu *p); /* PMU support init function */
void (*exit)(struct pai_pmu *p); /* PMU support exit function */
struct attribute_group *event_group; /* Ptr to attribute of events */
};
static struct pai_pmu pai_pmu[]; /* Forward declaration */
/* Free per CPU data when the last event is removed. */
static void pai_root_free(int idx)
{
if (refcount_dec_and_test(&pai_root[idx].refcnt)) {
free_percpu(pai_root[idx].mapptr);
pai_root[idx].mapptr = NULL;
}
debug_sprintf_event(paidbg, 5, "%s root[%d].refcount %d\n", __func__,
idx, refcount_read(&pai_root[idx].refcnt));
}
/*
* On initialization of first event also allocate per CPU data dynamically.
* Start with an array of pointers, the array size is the maximum number of
* CPUs possible, which might be larger than the number of CPUs currently
* online.
*/
static int pai_root_alloc(int idx)
{
if (!refcount_inc_not_zero(&pai_root[idx].refcnt)) {
/* The memory is already zeroed. */
pai_root[idx].mapptr = alloc_percpu(struct pai_mapptr);
if (!pai_root[idx].mapptr)
return -ENOMEM;
refcount_set(&pai_root[idx].refcnt, 1);
}
return 0;
}
/* Release the PMU if event is the last perf event */
static DEFINE_MUTEX(pai_reserve_mutex);
/* Free all memory allocated for event counting/sampling setup */
static void pai_free(struct pai_mapptr *mp)
{
if (mp->mapptr->fullpage)
free_page((unsigned long)mp->mapptr->area);
else
kfree(mp->mapptr->area);
kfree(mp->mapptr->paiext_cb);
kvfree(mp->mapptr->save);
kfree(mp->mapptr);
mp->mapptr = NULL;
}
/* Adjust usage counters and remove allocated memory when all users are
* gone.
*/
static void pai_event_destroy_cpu(struct perf_event *event, int cpu)
{
int idx = PAI_PMU_IDX(event);
struct pai_mapptr *mp = per_cpu_ptr(pai_root[idx].mapptr, cpu);
struct pai_map *cpump = mp->mapptr;
mutex_lock(&pai_reserve_mutex);
debug_sprintf_event(paidbg, 5, "%s event %#llx idx %d cpu %d users %d "
"refcnt %u\n", __func__, event->attr.config, idx,
event->cpu, cpump->active_events,
refcount_read(&cpump->refcnt));
if (refcount_dec_and_test(&cpump->refcnt))
pai_free(mp);
pai_root_free(idx);
mutex_unlock(&pai_reserve_mutex);
}
static void pai_event_destroy(struct perf_event *event)
{
int cpu;
free_page(PAI_SAVE_AREA(event));
if (event->cpu == -1) {
struct cpumask *mask = PAI_CPU_MASK(event);
for_each_cpu(cpu, mask)
pai_event_destroy_cpu(event, cpu);
kfree(mask);
} else {
pai_event_destroy_cpu(event, event->cpu);
}
}
static void paicrypt_event_destroy(struct perf_event *event)
{
static_branch_dec(&pai_key);
pai_event_destroy(event);
}
static u64 pai_getctr(unsigned long *page, int nr, unsigned long offset)
{
if (offset)
nr += offset / sizeof(*page);
return page[nr];
}
/* Read the counter values. Return value from location in CMP. For base
* event xxx_ALL sum up all events. Returns counter value.
*/
static u64 pai_getdata(struct perf_event *event, bool kernel)
{
int idx = PAI_PMU_IDX(event);
struct pai_mapptr *mp = this_cpu_ptr(pai_root[idx].mapptr);
struct pai_pmu *pp = &pai_pmu[idx];
struct pai_map *cpump = mp->mapptr;
unsigned int i;
u64 sum = 0;
if (event->attr.config != pp->base) {
return pai_getctr(cpump->area,
event->attr.config - pp->base,
kernel ? pp->kernel_offset : 0);
}
for (i = 1; i <= pp->num_avail; i++) {
u64 val = pai_getctr(cpump->area, i,
kernel ? pp->kernel_offset : 0);
if (!val)
continue;
sum += val;
}
return sum;
}
static u64 paicrypt_getall(struct perf_event *event)
{
u64 sum = 0;
if (!event->attr.exclude_kernel)
sum += pai_getdata(event, true);
if (!event->attr.exclude_user)
sum += pai_getdata(event, false);
return sum;
}
/* Check concurrent access of counting and sampling for crypto events.
* This function is called in process context and it is save to block.
* When the event initialization functions fails, no other call back will
* be invoked.
*
* Allocate the memory for the event.
*/
static int pai_alloc_cpu(struct perf_event *event, int cpu)
{
int rc, idx = PAI_PMU_IDX(event);
struct pai_map *cpump = NULL;
bool need_paiext_cb = false;
struct pai_mapptr *mp;
mutex_lock(&pai_reserve_mutex);
/* Allocate root node */
rc = pai_root_alloc(idx);
if (rc)
goto unlock;
/* Allocate node for this event */
mp = per_cpu_ptr(pai_root[idx].mapptr, cpu);
cpump = mp->mapptr;
if (!cpump) { /* Paicrypt_map allocated? */
rc = -ENOMEM;
cpump = kzalloc(sizeof(*cpump), GFP_KERNEL);
if (!cpump)
goto undo;
/* Allocate memory for counter page and counter extraction.
* Only the first counting event has to allocate a page.
*/
mp->mapptr = cpump;
if (idx == PAI_PMU_CRYPTO) {
cpump->area = (unsigned long *)get_zeroed_page(GFP_KERNEL);
/* free_page() can handle 0x0 address */
cpump->fullpage = true;
} else { /* PAI_PMU_EXT */
/*
* Allocate memory for counter area and counter extraction.
* These are
* - a 512 byte block and requires 512 byte boundary
* alignment.
* - a 1KB byte block and requires 1KB boundary
* alignment.
* Only the first counting event has to allocate the area.
*
* Note: This works with commit 59bb47985c1d by default.
* Backporting this to kernels without this commit might
* needs adjustment.
*/
cpump->area = kzalloc(pai_pmu[idx].area_size, GFP_KERNEL);
cpump->paiext_cb = kzalloc(PAIE1_CB_SZ, GFP_KERNEL);
need_paiext_cb = true;
}
cpump->save = kvmalloc_array(pai_pmu[idx].num_avail + 1,
sizeof(struct pai_userdata),
GFP_KERNEL);
if (!cpump->area || !cpump->save ||
(need_paiext_cb && !cpump->paiext_cb)) {
pai_free(mp);
goto undo;
}
INIT_LIST_HEAD(&cpump->syswide_list);
refcount_set(&cpump->refcnt, 1);
rc = 0;
} else {
refcount_inc(&cpump->refcnt);
}
undo:
if (rc) {
/* Error in allocation of event, decrement anchor. Since
* the event in not created, its destroy() function is never
* invoked. Adjust the reference counter for the anchor.
*/
pai_root_free(idx);
}
unlock:
mutex_unlock(&pai_reserve_mutex);
/* If rc is non-zero, no increment of counter/sampler was done. */
return rc;
}
static int pai_alloc(struct perf_event *event)
{
struct cpumask *maskptr;
int cpu, rc = -ENOMEM;
maskptr = kzalloc(sizeof(*maskptr), GFP_KERNEL);
if (!maskptr)
goto out;
for_each_online_cpu(cpu) {
rc = pai_alloc_cpu(event, cpu);
if (rc) {
for_each_cpu(cpu, maskptr)
pai_event_destroy_cpu(event, cpu);
kfree(maskptr);
goto out;
}
cpumask_set_cpu(cpu, maskptr);
}
/*
* On error all cpumask are freed and all events have been destroyed.
* Save of which CPUs data structures have been allocated for.
* Release them in pai_event_destroy call back function
* for this event.
*/
PAI_CPU_MASK(event) = maskptr;
rc = 0;
out:
return rc;
}
/* Validate event number and return error if event is not supported.
* On successful return, PAI_PMU_IDX(event) is set to the index of
* the supporting paing_support[] array element.
*/
static int pai_event_valid(struct perf_event *event, int idx)
{
struct perf_event_attr *a = &event->attr;
struct pai_pmu *pp = &pai_pmu[idx];
/* PAI crypto PMU registered as PERF_TYPE_RAW, check event type */
if (a->type != PERF_TYPE_RAW && event->pmu->type != a->type)
return -ENOENT;
/* Allow only CRYPTO_ALL/NNPA_ALL for sampling */
if (a->sample_period && a->config != pp->base)
return -EINVAL;
/* PAI crypto event must be in valid range, try others if not */
if (a->config < pp->base || a->config > pp->base + pp->num_avail)
return -ENOENT;
if (idx == PAI_PMU_EXT && a->exclude_user)
return -EINVAL;
PAI_PMU_IDX(event) = idx;
return 0;
}
/* Might be called on different CPU than the one the event is intended for. */
static int pai_event_init(struct perf_event *event, int idx)
{
struct perf_event_attr *a = &event->attr;
int rc;
/* PAI event must be valid and in supported range */
rc = pai_event_valid(event, idx);
if (rc)
goto out;
/* Get a page to store last counter values for sampling */
if (a->sample_period) {
PAI_SAVE_AREA(event) = get_zeroed_page(GFP_KERNEL);
if (!PAI_SAVE_AREA(event)) {
rc = -ENOMEM;
goto out;
}
}
if (event->cpu >= 0)
rc = pai_alloc_cpu(event, event->cpu);
else
rc = pai_alloc(event);
if (rc) {
free_page(PAI_SAVE_AREA(event));
goto out;
}
if (a->sample_period) {
a->sample_period = 1;
a->freq = 0;
/* Register for paicrypt_sched_task() to be called */
event->attach_state |= PERF_ATTACH_SCHED_CB;
/* Add raw data which contain the memory mapped counters */
a->sample_type |= PERF_SAMPLE_RAW;
/* Turn off inheritance */
a->inherit = 0;
}
out:
return rc;
}
static int paicrypt_event_init(struct perf_event *event)
{
int rc = pai_event_init(event, PAI_PMU_CRYPTO);
if (!rc) {
event->destroy = paicrypt_event_destroy;
static_branch_inc(&pai_key);
}
return rc;
}
static void pai_read(struct perf_event *event,
u64 (*fct)(struct perf_event *event))
{
u64 prev, new, delta;
prev = local64_read(&event->hw.prev_count);
new = fct(event);
local64_set(&event->hw.prev_count, new);
delta = (prev <= new) ? new - prev : (-1ULL - prev) + new + 1;
local64_add(delta, &event->count);
}
static void paicrypt_read(struct perf_event *event)
{
pai_read(event, paicrypt_getall);
}
static void pai_start(struct perf_event *event, int flags,
u64 (*fct)(struct perf_event *event))
{
int idx = PAI_PMU_IDX(event);
struct pai_pmu *pp = &pai_pmu[idx];
struct pai_mapptr *mp = this_cpu_ptr(pai_root[idx].mapptr);
struct pai_map *cpump = mp->mapptr;
u64 sum;
if (!event->attr.sample_period) { /* Counting */
sum = fct(event); /* Get current value */
local64_set(&event->hw.prev_count, sum);
} else { /* Sampling */
memcpy((void *)PAI_SAVE_AREA(event), cpump->area, pp->area_size);
/* Enable context switch callback for system-wide sampling */
if (!(event->attach_state & PERF_ATTACH_TASK)) {
list_add_tail(PAI_SWLIST(event), &cpump->syswide_list);
perf_sched_cb_inc(event->pmu);
} else {
cpump->event = event;
}
}
}
static void paicrypt_start(struct perf_event *event, int flags)
{
pai_start(event, flags, paicrypt_getall);
}
static int pai_add(struct perf_event *event, int flags)
{
int idx = PAI_PMU_IDX(event);
struct pai_mapptr *mp = this_cpu_ptr(pai_root[idx].mapptr);
struct pai_map *cpump = mp->mapptr;
struct paiext_cb *pcb = cpump->paiext_cb;
unsigned long ccd;
if (++cpump->active_events == 1) {
if (!pcb) { /* PAI crypto */
ccd = virt_to_phys(cpump->area) | PAI_CRYPTO_KERNEL_OFFSET;
WRITE_ONCE(get_lowcore()->ccd, ccd);
local_ctl_set_bit(0, CR0_CRYPTOGRAPHY_COUNTER_BIT);
} else { /* PAI extension 1 */
ccd = virt_to_phys(pcb);
WRITE_ONCE(get_lowcore()->aicd, ccd);
pcb->acc = virt_to_phys(cpump->area) | 0x1;
/* Enable CPU instruction lookup for PAIE1 control block */
local_ctl_set_bit(0, CR0_PAI_EXTENSION_BIT);
}
}
if (flags & PERF_EF_START)
pai_pmu[idx].pmu->start(event, PERF_EF_RELOAD);
event->hw.state = 0;
return 0;
}
static int paicrypt_add(struct perf_event *event, int flags)
{
return pai_add(event, flags);
}
static void pai_have_sample(struct perf_event *, struct pai_map *);
static void pai_stop(struct perf_event *event, int flags)
{
int idx = PAI_PMU_IDX(event);
struct pai_mapptr *mp = this_cpu_ptr(pai_root[idx].mapptr);
struct pai_map *cpump = mp->mapptr;
if (!event->attr.sample_period) { /* Counting */
pai_pmu[idx].pmu->read(event);
} else { /* Sampling */
if (!(event->attach_state & PERF_ATTACH_TASK)) {
perf_sched_cb_dec(event->pmu);
list_del(PAI_SWLIST(event));
} else {
pai_have_sample(event, cpump);
cpump->event = NULL;
}
}
event->hw.state = PERF_HES_STOPPED;
}
static void paicrypt_stop(struct perf_event *event, int flags)
{
pai_stop(event, flags);
}
static void pai_del(struct perf_event *event, int flags)
{
int idx = PAI_PMU_IDX(event);
struct pai_mapptr *mp = this_cpu_ptr(pai_root[idx].mapptr);
struct pai_map *cpump = mp->mapptr;
struct paiext_cb *pcb = cpump->paiext_cb;
pai_pmu[idx].pmu->stop(event, PERF_EF_UPDATE);
if (--cpump->active_events == 0) {
if (!pcb) { /* PAI crypto */
local_ctl_clear_bit(0, CR0_CRYPTOGRAPHY_COUNTER_BIT);
WRITE_ONCE(get_lowcore()->ccd, 0);
} else { /* PAI extension 1 */
/* Disable CPU instruction lookup for PAIE1 control block */
local_ctl_clear_bit(0, CR0_PAI_EXTENSION_BIT);
pcb->acc = 0;
WRITE_ONCE(get_lowcore()->aicd, 0);
}
}
}
static void paicrypt_del(struct perf_event *event, int flags)
{
pai_del(event, flags);
}
/* Create raw data and save it in buffer. Calculate the delta for each
* counter between this invocation and the last invocation.
* Returns number of bytes copied.
* Saves only entries with positive counter difference of the form
* 2 bytes: Number of counter
* 8 bytes: Value of counter
*/
static size_t pai_copy(struct pai_userdata *userdata, unsigned long *page,
struct pai_pmu *pp, unsigned long *page_old,
bool exclude_user, bool exclude_kernel)
{
int i, outidx = 0;
for (i = 1; i <= pp->num_avail; i++) {
u64 val = 0, val_old = 0;
if (!exclude_kernel) {
val += pai_getctr(page, i, pp->kernel_offset);
val_old += pai_getctr(page_old, i, pp->kernel_offset);
}
if (!exclude_user) {
val += pai_getctr(page, i, 0);
val_old += pai_getctr(page_old, i, 0);
}
if (val >= val_old)
val -= val_old;
else
val = (~0ULL - val_old) + val + 1;
if (val) {
userdata[outidx].num = i;
userdata[outidx].value = val;
outidx++;
}
}
return outidx * sizeof(*userdata);
}
/* Write sample when one or more counters values are nonzero.
*
* Note: The function paicrypt_sched_task() and pai_push_sample() are not
* invoked after function paicrypt_del() has been called because of function
* perf_sched_cb_dec(). Both functions are only
* called when sampling is active. Function perf_sched_cb_inc()
* has been invoked to install function paicrypt_sched_task() as call back
* to run at context switch time.
*
* This causes function perf_event_context_sched_out() and
* perf_event_context_sched_in() to check whether the PMU has installed an
* sched_task() callback. That callback is not active after paicrypt_del()
* returns and has deleted the event on that CPU.
*/
static int pai_push_sample(size_t rawsize, struct pai_map *cpump,
struct perf_event *event)
{
int idx = PAI_PMU_IDX(event);
struct pai_pmu *pp = &pai_pmu[idx];
struct perf_sample_data data;
struct perf_raw_record raw;
struct pt_regs regs;
int overflow;
/* Setup perf sample */
memset(&regs, 0, sizeof(regs));
memset(&raw, 0, sizeof(raw));
memset(&data, 0, sizeof(data));
perf_sample_data_init(&data, 0, event->hw.last_period);
if (event->attr.sample_type & PERF_SAMPLE_TID) {
data.tid_entry.pid = task_tgid_nr(current);
data.tid_entry.tid = task_pid_nr(current);
}
if (event->attr.sample_type & PERF_SAMPLE_TIME)
data.time = event->clock();
if (event->attr.sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
data.id = event->id;
if (event->attr.sample_type & PERF_SAMPLE_CPU) {
data.cpu_entry.cpu = smp_processor_id();
data.cpu_entry.reserved = 0;
}
if (event->attr.sample_type & PERF_SAMPLE_RAW) {
raw.frag.size = rawsize;
raw.frag.data = cpump->save;
perf_sample_save_raw_data(&data, event, &raw);
}
overflow = perf_event_overflow(event, &data, &regs);
perf_event_update_userpage(event);
/* Save crypto counter lowcore page after reading event data. */
memcpy((void *)PAI_SAVE_AREA(event), cpump->area, pp->area_size);
return overflow;
}
/* Check if there is data to be saved on schedule out of a task. */
static void pai_have_sample(struct perf_event *event, struct pai_map *cpump)
{
struct pai_pmu *pp;
size_t rawsize;
if (!event) /* No event active */
return;
pp = &pai_pmu[PAI_PMU_IDX(event)];
rawsize = pai_copy(cpump->save, cpump->area, pp,
(unsigned long *)PAI_SAVE_AREA(event),
event->attr.exclude_user,
event->attr.exclude_kernel);
if (rawsize) /* No incremented counters */
pai_push_sample(rawsize, cpump, event);
}
/* Check if there is data to be saved on schedule out of a task. */
static void pai_have_samples(int idx)
{
struct pai_mapptr *mp = this_cpu_ptr(pai_root[idx].mapptr);
struct pai_map *cpump = mp->mapptr;
struct perf_event *event;
list_for_each_entry(event, &cpump->syswide_list, hw.tp_list)
pai_have_sample(event, cpump);
}
/* Called on schedule-in and schedule-out. No access to event structure,
* but for sampling only event CRYPTO_ALL is allowed.
*/
static void paicrypt_sched_task(struct perf_event_pmu_context *pmu_ctx,
struct task_struct *task, bool sched_in)
{
/* We started with a clean page on event installation. So read out
* results on schedule_out and if page was dirty, save old values.
*/
if (!sched_in)
pai_have_samples(PAI_PMU_CRYPTO);
}
/* ============================= paiext ====================================*/
static void paiext_event_destroy(struct perf_event *event)
{
pai_event_destroy(event);
}
/* Might be called on different CPU than the one the event is intended for. */
static int paiext_event_init(struct perf_event *event)
{
int rc = pai_event_init(event, PAI_PMU_EXT);
if (!rc) {
event->attr.exclude_kernel = true; /* No kernel space part */
event->destroy = paiext_event_destroy;
/* Offset of NNPA in paiext_cb */
event->hw.config_base = offsetof(struct paiext_cb, acc);
}
return rc;
}
static u64 paiext_getall(struct perf_event *event)
{
return pai_getdata(event, false);
}
static void paiext_read(struct perf_event *event)
{
pai_read(event, paiext_getall);
}
static void paiext_start(struct perf_event *event, int flags)
{
pai_start(event, flags, paiext_getall);
}
static int paiext_add(struct perf_event *event, int flags)
{
return pai_add(event, flags);
}
static void paiext_stop(struct perf_event *event, int flags)
{
pai_stop(event, flags);
}
static void paiext_del(struct perf_event *event, int flags)
{
pai_del(event, flags);
}
/* Called on schedule-in and schedule-out. No access to event structure,
* but for sampling only event NNPA_ALL is allowed.
*/
static void paiext_sched_task(struct perf_event_pmu_context *pmu_ctx,
struct task_struct *task, bool sched_in)
{
/* We started with a clean page on event installation. So read out
* results on schedule_out and if page was dirty, save old values.
*/
if (!sched_in)
pai_have_samples(PAI_PMU_EXT);
}
/* Attribute definitions for paicrypt interface. As with other CPU
* Measurement Facilities, there is one attribute per mapped counter.
* The number of mapped counters may vary per machine generation. Use
* the QUERY PROCESSOR ACTIVITY COUNTER INFORMATION (QPACI) instruction
* to determine the number of mapped counters. The instructions returns
* a positive number, which is the highest number of supported counters.
* All counters less than this number are also supported, there are no
* holes. A returned number of zero means no support for mapped counters.
*
* The identification of the counter is a unique number. The chosen range
* is 0x1000 + offset in mapped kernel page.
* All CPU Measurement Facility counters identifiers must be unique and
* the numbers from 0 to 496 are already used for the CPU Measurement
* Counter facility. Numbers 0xb0000, 0xbc000 and 0xbd000 are already
* used for the CPU Measurement Sampling facility.
*/
PMU_FORMAT_ATTR(event, "config:0-63");
static struct attribute *paicrypt_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group paicrypt_events_group = {
.name = "events",
.attrs = NULL /* Filled in attr_event_init() */
};
static struct attribute_group paicrypt_format_group = {
.name = "format",
.attrs = paicrypt_format_attr,
};
static const struct attribute_group *paicrypt_attr_groups[] = {
&paicrypt_events_group,
&paicrypt_format_group,
NULL,
};
/* Performance monitoring unit for mapped counters */
static struct pmu paicrypt = {
.task_ctx_nr = perf_hw_context,
.event_init = paicrypt_event_init,
.add = paicrypt_add,
.del = paicrypt_del,
.start = paicrypt_start,
.stop = paicrypt_stop,
.read = paicrypt_read,
.sched_task = paicrypt_sched_task,
.attr_groups = paicrypt_attr_groups
};
/* List of symbolic PAI counter names. */
static const char * const paicrypt_ctrnames[] = {
[0] = "CRYPTO_ALL",
[1] = "KM_DEA",
[2] = "KM_TDEA_128",
[3] = "KM_TDEA_192",
[4] = "KM_ENCRYPTED_DEA",
[5] = "KM_ENCRYPTED_TDEA_128",
[6] = "KM_ENCRYPTED_TDEA_192",
[7] = "KM_AES_128",
[8] = "KM_AES_192",
[9] = "KM_AES_256",
[10] = "KM_ENCRYPTED_AES_128",
[11] = "KM_ENCRYPTED_AES_192",
[12] = "KM_ENCRYPTED_AES_256",
[13] = "KM_XTS_AES_128",
[14] = "KM_XTS_AES_256",
[15] = "KM_XTS_ENCRYPTED_AES_128",
[16] = "KM_XTS_ENCRYPTED_AES_256",
[17] = "KMC_DEA",
[18] = "KMC_TDEA_128",
[19] = "KMC_TDEA_192",
[20] = "KMC_ENCRYPTED_DEA",
[21] = "KMC_ENCRYPTED_TDEA_128",
[22] = "KMC_ENCRYPTED_TDEA_192",
[23] = "KMC_AES_128",
[24] = "KMC_AES_192",
[25] = "KMC_AES_256",
[26] = "KMC_ENCRYPTED_AES_128",
[27] = "KMC_ENCRYPTED_AES_192",
[28] = "KMC_ENCRYPTED_AES_256",
[29] = "KMC_PRNG",
[30] = "KMA_GCM_AES_128",
[31] = "KMA_GCM_AES_192",
[32] = "KMA_GCM_AES_256",
[33] = "KMA_GCM_ENCRYPTED_AES_128",
[34] = "KMA_GCM_ENCRYPTED_AES_192",
[35] = "KMA_GCM_ENCRYPTED_AES_256",
[36] = "KMF_DEA",
[37] = "KMF_TDEA_128",
[38] = "KMF_TDEA_192",
[39] = "KMF_ENCRYPTED_DEA",
[40] = "KMF_ENCRYPTED_TDEA_128",
[41] = "KMF_ENCRYPTED_TDEA_192",
[42] = "KMF_AES_128",
[43] = "KMF_AES_192",
[44] = "KMF_AES_256",
[45] = "KMF_ENCRYPTED_AES_128",
[46] = "KMF_ENCRYPTED_AES_192",
[47] = "KMF_ENCRYPTED_AES_256",
[48] = "KMCTR_DEA",
[49] = "KMCTR_TDEA_128",
[50] = "KMCTR_TDEA_192",
[51] = "KMCTR_ENCRYPTED_DEA",
[52] = "KMCTR_ENCRYPTED_TDEA_128",
[53] = "KMCTR_ENCRYPTED_TDEA_192",
[54] = "KMCTR_AES_128",
[55] = "KMCTR_AES_192",
[56] = "KMCTR_AES_256",
[57] = "KMCTR_ENCRYPTED_AES_128",
[58] = "KMCTR_ENCRYPTED_AES_192",
[59] = "KMCTR_ENCRYPTED_AES_256",
[60] = "KMO_DEA",
[61] = "KMO_TDEA_128",
[62] = "KMO_TDEA_192",
[63] = "KMO_ENCRYPTED_DEA",
[64] = "KMO_ENCRYPTED_TDEA_128",
[65] = "KMO_ENCRYPTED_TDEA_192",
[66] = "KMO_AES_128",
[67] = "KMO_AES_192",
[68] = "KMO_AES_256",
[69] = "KMO_ENCRYPTED_AES_128",
[70] = "KMO_ENCRYPTED_AES_192",
[71] = "KMO_ENCRYPTED_AES_256",
[72] = "KIMD_SHA_1",
[73] = "KIMD_SHA_256",
[74] = "KIMD_SHA_512",
[75] = "KIMD_SHA3_224",
[76] = "KIMD_SHA3_256",
[77] = "KIMD_SHA3_384",
[78] = "KIMD_SHA3_512",
[79] = "KIMD_SHAKE_128",
[80] = "KIMD_SHAKE_256",
[81] = "KIMD_GHASH",
[82] = "KLMD_SHA_1",
[83] = "KLMD_SHA_256",
[84] = "KLMD_SHA_512",
[85] = "KLMD_SHA3_224",
[86] = "KLMD_SHA3_256",
[87] = "KLMD_SHA3_384",
[88] = "KLMD_SHA3_512",
[89] = "KLMD_SHAKE_128",
[90] = "KLMD_SHAKE_256",
[91] = "KMAC_DEA",
[92] = "KMAC_TDEA_128",
[93] = "KMAC_TDEA_192",
[94] = "KMAC_ENCRYPTED_DEA",
[95] = "KMAC_ENCRYPTED_TDEA_128",
[96] = "KMAC_ENCRYPTED_TDEA_192",
[97] = "KMAC_AES_128",
[98] = "KMAC_AES_192",
[99] = "KMAC_AES_256",
[100] = "KMAC_ENCRYPTED_AES_128",
[101] = "KMAC_ENCRYPTED_AES_192",
[102] = "KMAC_ENCRYPTED_AES_256",
[103] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_DEA",
[104] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_128",
[105] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_192",
[106] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_DEA",
[107] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_128",
[108] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_192",
[109] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_128",
[110] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_192",
[111] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_256",
[112] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_128",
[113] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_192",
[114] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_256",
[115] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_128",
[116] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_256",
[117] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_128",
[118] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_256",
[119] = "PCC_SCALAR_MULTIPLY_P256",
[120] = "PCC_SCALAR_MULTIPLY_P384",
[121] = "PCC_SCALAR_MULTIPLY_P521",
[122] = "PCC_SCALAR_MULTIPLY_ED25519",
[123] = "PCC_SCALAR_MULTIPLY_ED448",
[124] = "PCC_SCALAR_MULTIPLY_X25519",
[125] = "PCC_SCALAR_MULTIPLY_X448",
[126] = "PRNO_SHA_512_DRNG",
[127] = "PRNO_TRNG_QUERY_RAW_TO_CONDITIONED_RATIO",
[128] = "PRNO_TRNG",
[129] = "KDSA_ECDSA_VERIFY_P256",
[130] = "KDSA_ECDSA_VERIFY_P384",
[131] = "KDSA_ECDSA_VERIFY_P521",
[132] = "KDSA_ECDSA_SIGN_P256",
[133] = "KDSA_ECDSA_SIGN_P384",
[134] = "KDSA_ECDSA_SIGN_P521",
[135] = "KDSA_ENCRYPTED_ECDSA_SIGN_P256",
[136] = "KDSA_ENCRYPTED_ECDSA_SIGN_P384",
[137] = "KDSA_ENCRYPTED_ECDSA_SIGN_P521",
[138] = "KDSA_EDDSA_VERIFY_ED25519",
[139] = "KDSA_EDDSA_VERIFY_ED448",
[140] = "KDSA_EDDSA_SIGN_ED25519",
[141] = "KDSA_EDDSA_SIGN_ED448",
[142] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED25519",
[143] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED448",
[144] = "PCKMO_ENCRYPT_DEA_KEY",
[145] = "PCKMO_ENCRYPT_TDEA_128_KEY",
[146] = "PCKMO_ENCRYPT_TDEA_192_KEY",
[147] = "PCKMO_ENCRYPT_AES_128_KEY",
[148] = "PCKMO_ENCRYPT_AES_192_KEY",
[149] = "PCKMO_ENCRYPT_AES_256_KEY",
[150] = "PCKMO_ENCRYPT_ECC_P256_KEY",
[151] = "PCKMO_ENCRYPT_ECC_P384_KEY",
[152] = "PCKMO_ENCRYPT_ECC_P521_KEY",
[153] = "PCKMO_ENCRYPT_ECC_ED25519_KEY",
[154] = "PCKMO_ENCRYPT_ECC_ED448_KEY",
[155] = "IBM_RESERVED_155",
[156] = "IBM_RESERVED_156",
[157] = "KM_FULL_XTS_AES_128",
[158] = "KM_FULL_XTS_AES_256",
[159] = "KM_FULL_XTS_ENCRYPTED_AES_128",
[160] = "KM_FULL_XTS_ENCRYPTED_AES_256",
[161] = "KMAC_HMAC_SHA_224",
[162] = "KMAC_HMAC_SHA_256",
[163] = "KMAC_HMAC_SHA_384",
[164] = "KMAC_HMAC_SHA_512",
[165] = "KMAC_HMAC_ENCRYPTED_SHA_224",
[166] = "KMAC_HMAC_ENCRYPTED_SHA_256",
[167] = "KMAC_HMAC_ENCRYPTED_SHA_384",
[168] = "KMAC_HMAC_ENCRYPTED_SHA_512",
[169] = "PCKMO_ENCRYPT_HMAC_512_KEY",
[170] = "PCKMO_ENCRYPT_HMAC_1024_KEY",
[171] = "PCKMO_ENCRYPT_AES_XTS_128",
[172] = "PCKMO_ENCRYPT_AES_XTS_256",
};
static struct attribute *paiext_format_attr[] = {
&format_attr_event.attr,
NULL,
};
static struct attribute_group paiext_events_group = {
.name = "events",
.attrs = NULL, /* Filled in attr_event_init() */
};
static struct attribute_group paiext_format_group = {
.name = "format",
.attrs = paiext_format_attr,
};
static const struct attribute_group *paiext_attr_groups[] = {
&paiext_events_group,
&paiext_format_group,
NULL,
};
/* Performance monitoring unit for mapped counters */
static struct pmu paiext = {
.task_ctx_nr = perf_hw_context,
.event_init = paiext_event_init,
.add = paiext_add,
.del = paiext_del,
.start = paiext_start,
.stop = paiext_stop,
.read = paiext_read,
.sched_task = paiext_sched_task,
.attr_groups = paiext_attr_groups,
};
/* List of symbolic PAI extension 1 NNPA counter names. */
static const char * const paiext_ctrnames[] = {
[0] = "NNPA_ALL",
[1] = "NNPA_ADD",
[2] = "NNPA_SUB",
[3] = "NNPA_MUL",
[4] = "NNPA_DIV",
[5] = "NNPA_MIN",
[6] = "NNPA_MAX",
[7] = "NNPA_LOG",
[8] = "NNPA_EXP",
[9] = "NNPA_IBM_RESERVED_9",
[10] = "NNPA_RELU",
[11] = "NNPA_TANH",
[12] = "NNPA_SIGMOID",
[13] = "NNPA_SOFTMAX",
[14] = "NNPA_BATCHNORM",
[15] = "NNPA_MAXPOOL2D",
[16] = "NNPA_AVGPOOL2D",
[17] = "NNPA_LSTMACT",
[18] = "NNPA_GRUACT",
[19] = "NNPA_CONVOLUTION",
[20] = "NNPA_MATMUL_OP",
[21] = "NNPA_MATMUL_OP_BCAST23",
[22] = "NNPA_SMALLBATCH",
[23] = "NNPA_LARGEDIM",
[24] = "NNPA_SMALLTENSOR",
[25] = "NNPA_1MFRAME",
[26] = "NNPA_2GFRAME",
[27] = "NNPA_ACCESSEXCEPT",
[28] = "NNPA_TRANSFORM",
[29] = "NNPA_GELU",
[30] = "NNPA_MOMENTS",
[31] = "NNPA_LAYERNORM",
[32] = "NNPA_MATMUL_OP_BCAST1",
[33] = "NNPA_SQRT",
[34] = "NNPA_INVSQRT",
[35] = "NNPA_NORM",
[36] = "NNPA_REDUCE",
};
static void __init attr_event_free(struct attribute **attrs)
{
struct perf_pmu_events_attr *pa;
unsigned int i;
for (i = 0; attrs[i]; i++) {
struct device_attribute *dap;
dap = container_of(attrs[i], struct device_attribute, attr);
pa = container_of(dap, struct perf_pmu_events_attr, attr);
kfree(pa);
}
kfree(attrs);
}
static struct attribute * __init attr_event_init_one(int num,
unsigned long base,
const char *name)
{
struct perf_pmu_events_attr *pa;
pa = kzalloc(sizeof(*pa), GFP_KERNEL);
if (!pa)
return NULL;
sysfs_attr_init(&pa->attr.attr);
pa->id = base + num;
pa->attr.attr.name = name;
pa->attr.attr.mode = 0444;
pa->attr.show = cpumf_events_sysfs_show;
pa->attr.store = NULL;
return &pa->attr.attr;
}
static struct attribute ** __init attr_event_init(struct pai_pmu *p)
{
unsigned int min_attr = min_t(unsigned int, p->num_named, p->num_avail);
struct attribute **attrs;
unsigned int i;
attrs = kmalloc_array(min_attr + 1, sizeof(*attrs), GFP_KERNEL | __GFP_ZERO);
if (!attrs)
goto out;
for (i = 0; i < min_attr; i++) {
attrs[i] = attr_event_init_one(i, p->base, p->names[i]);
if (!attrs[i]) {
attr_event_free(attrs);
attrs = NULL;
goto out;
}
}
attrs[i] = NULL;
out:
return attrs;
}
static void __init pai_pmu_exit(struct pai_pmu *p)
{
attr_event_free(p->event_group->attrs);
p->event_group->attrs = NULL;
}
/* Add a PMU. Install its events and register the PMU device driver
* call back functions.
*/
static int __init pai_pmu_init(struct pai_pmu *p)
{
int rc = -ENOMEM;
/* Export known PAI events */
p->event_group->attrs = attr_event_init(p);
if (!p->event_group->attrs) {
pr_err("Creation of PMU %s /sysfs failed\n", p->pmuname);
goto out;
}
rc = perf_pmu_register(p->pmu, p->pmuname, -1);
if (rc) {
pai_pmu_exit(p);
pr_err("Registering PMU %s failed with rc=%i\n", p->pmuname,
rc);
}
out:
return rc;
}
/* PAI PMU characteristics table */
static struct pai_pmu pai_pmu[] __refdata = {
[PAI_PMU_CRYPTO] = {
.pmuname = "pai_crypto",
.facility_nr = 196,
.num_named = ARRAY_SIZE(paicrypt_ctrnames),
.names = paicrypt_ctrnames,
.base = PAI_CRYPTO_BASE,
.kernel_offset = PAI_CRYPTO_KERNEL_OFFSET,
.area_size = PAGE_SIZE,
.init = pai_pmu_init,
.exit = pai_pmu_exit,
.pmu = &paicrypt,
.event_group = &paicrypt_events_group
},
[PAI_PMU_EXT] = {
.pmuname = "pai_ext",
.facility_nr = 197,
.num_named = ARRAY_SIZE(paiext_ctrnames),
.names = paiext_ctrnames,
.base = PAI_NNPA_BASE,
.kernel_offset = 0,
.area_size = PAIE1_CTRBLOCK_SZ,
.init = pai_pmu_init,
.exit = pai_pmu_exit,
.pmu = &paiext,
.event_group = &paiext_events_group
}
};
/*
* Check if the PMU (via facility) is supported by machine. Try all of the
* supported PAI PMUs.
* Return number of successfully installed PMUs.
*/
static int __init paipmu_setup(void)
{
struct qpaci_info_block ib;
int install_ok = 0, rc;
struct pai_pmu *p;
size_t i;
for (i = 0; i < ARRAY_SIZE(pai_pmu); ++i) {
p = &pai_pmu[i];
if (!test_facility(p->facility_nr))
continue;
qpaci(&ib);
switch (i) {
case PAI_PMU_CRYPTO:
p->num_avail = ib.num_cc;
if (p->num_avail >= PAI_CRYPTO_MAXCTR) {
pr_err("Too many PMU %s counters %d\n",
p->pmuname, p->num_avail);
continue;
}
break;
case PAI_PMU_EXT:
p->num_avail = ib.num_nnpa;
break;
}
p->num_avail += 1; /* Add xxx_ALL event */
if (p->init) {
rc = p->init(p);
if (!rc)
++install_ok;
}
}
return install_ok;
}
static int __init pai_init(void)
{
/* Setup s390dbf facility */
paidbg = debug_register("pai", 32, 256, 128);
if (!paidbg) {
pr_err("Registration of s390dbf pai failed\n");
return -ENOMEM;
}
debug_register_view(paidbg, &debug_sprintf_view);
if (!paipmu_setup()) {
/* No PMU registration, no need for debug buffer */
debug_unregister_view(paidbg, &debug_sprintf_view);
debug_unregister(paidbg);
return -ENODEV;
}
return 0;
}
device_initcall(pai_init);