Add a scope-based helpers for runtime PM that may be used to simplify
cleanup logic and potentially avoid goto-based cleanup.
For example, using
guard(xe_pm_runtime)(xe);
will get runtime PM and cause a corresponding put to occur automatically
when the current scope is exited. 'xe_pm_runtime_noresume' can be used
as a guard replacement for the corresponding 'noresume' variant.
There's also an xe_pm_runtime_ioctl conditional guard that can be used
as a replacement for xe_runtime_ioctl():
ACQUIRE(xe_pm_runtime_ioctl, pm)(xe);
if ((ret = ACQUIRE_ERR(xe_pm_runtime_ioctl, &pm)) < 0)
/* failed */
In a few rare cases (such as gt_reset_worker()) we need to ensure that
runtime PM is dropped when the function is exited by any means
(including error paths), but the function does not need to acquire
runtime PM because that has already been done earlier by a different
function. For these special cases, an 'xe_pm_runtime_release_only'
guard can be used to handle the release without doing an acquisition.
These guards will be used in future patches to eliminate some of our
goto-based cleanup.
v2:
- Specify success condition for xe_pm runtime_ioctl as _RET >= 0 so
that positive values will be properly identified as success and
trigger destructor cleanup properly.
v3:
- Add comments to the kerneldoc for the existing 'get' functions
indicating that scope-based handling should be preferred where
possible. (Gustavo)
Cc: Gustavo Sousa <gustavo.sousa@intel.com>
Reviewed-by: Michal Wajdeczko <michal.wajdeczko@intel.com>
Reviewed-by: Gustavo Sousa <gustavo.sousa@intel.com>
Link: https://patch.msgid.link/20251118164338.3572146-31-matthew.d.roper@intel.com
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
(cherry picked from commit 59e7528dbfd52efbed05e0f11b2143217a12bc74)
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
981 lines
26 KiB
C
981 lines
26 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2022 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_pm.h"
|
|
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/suspend.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/ttm/ttm_placement.h>
|
|
|
|
#include "display/xe_display.h"
|
|
#include "xe_bo.h"
|
|
#include "xe_bo_evict.h"
|
|
#include "xe_device.h"
|
|
#include "xe_ggtt.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_idle.h"
|
|
#include "xe_i2c.h"
|
|
#include "xe_irq.h"
|
|
#include "xe_late_bind_fw.h"
|
|
#include "xe_pcode.h"
|
|
#include "xe_pxp.h"
|
|
#include "xe_sriov_vf_ccs.h"
|
|
#include "xe_trace.h"
|
|
#include "xe_vm.h"
|
|
#include "xe_wa.h"
|
|
|
|
/**
|
|
* DOC: Xe Power Management
|
|
*
|
|
* Xe PM implements the main routines for both system level suspend states and
|
|
* for the opportunistic runtime suspend states.
|
|
*
|
|
* System Level Suspend (S-States) - In general this is OS initiated suspend
|
|
* driven by ACPI for achieving S0ix (a.k.a. S2idle, freeze), S3 (suspend to ram),
|
|
* S4 (disk). The main functions here are `xe_pm_suspend` and `xe_pm_resume`. They
|
|
* are the main point for the suspend to and resume from these states.
|
|
*
|
|
* PCI Device Suspend (D-States) - This is the opportunistic PCIe device low power
|
|
* state D3, controlled by the PCI subsystem and ACPI with the help from the
|
|
* runtime_pm infrastructure.
|
|
* PCI D3 is special and can mean D3hot, where Vcc power is on for keeping memory
|
|
* alive and quicker low latency resume or D3Cold where Vcc power is off for
|
|
* better power savings.
|
|
* The Vcc control of PCI hierarchy can only be controlled at the PCI root port
|
|
* level, while the device driver can be behind multiple bridges/switches and
|
|
* paired with other devices. For this reason, the PCI subsystem cannot perform
|
|
* the transition towards D3Cold. The lowest runtime PM possible from the PCI
|
|
* subsystem is D3hot. Then, if all these paired devices in the same root port
|
|
* are in D3hot, ACPI will assist here and run its own methods (_PR3 and _OFF)
|
|
* to perform the transition from D3hot to D3cold. Xe may disallow this
|
|
* transition by calling pci_d3cold_disable(root_pdev) before going to runtime
|
|
* suspend. It will be based on runtime conditions such as VRAM usage for a
|
|
* quick and low latency resume for instance.
|
|
*
|
|
* Runtime PM - This infrastructure provided by the Linux kernel allows the
|
|
* device drivers to indicate when the can be runtime suspended, so the device
|
|
* could be put at D3 (if supported), or allow deeper package sleep states
|
|
* (PC-states), and/or other low level power states. Xe PM component provides
|
|
* `xe_pm_runtime_suspend` and `xe_pm_runtime_resume` functions that PCI
|
|
* subsystem will call before transition to/from runtime suspend.
|
|
*
|
|
* Also, Xe PM provides get and put functions that Xe driver will use to
|
|
* indicate activity. In order to avoid locking complications with the memory
|
|
* management, whenever possible, these get and put functions needs to be called
|
|
* from the higher/outer levels.
|
|
* The main cases that need to be protected from the outer levels are: IOCTL,
|
|
* sysfs, debugfs, dma-buf sharing, GPU execution.
|
|
*
|
|
* This component is not responsible for GT idleness (RC6) nor GT frequency
|
|
* management (RPS).
|
|
*/
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
static struct lockdep_map xe_pm_runtime_d3cold_map = {
|
|
.name = "xe_rpm_d3cold_map"
|
|
};
|
|
|
|
static struct lockdep_map xe_pm_runtime_nod3cold_map = {
|
|
.name = "xe_rpm_nod3cold_map"
|
|
};
|
|
|
|
static struct lockdep_map xe_pm_block_lockdep_map = {
|
|
.name = "xe_pm_block_map",
|
|
};
|
|
#endif
|
|
|
|
static void xe_pm_block_begin_signalling(void)
|
|
{
|
|
lock_acquire_shared_recursive(&xe_pm_block_lockdep_map, 0, 1, NULL, _RET_IP_);
|
|
}
|
|
|
|
static void xe_pm_block_end_signalling(void)
|
|
{
|
|
lock_release(&xe_pm_block_lockdep_map, _RET_IP_);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_might_block_on_suspend() - Annotate that the code might block on suspend
|
|
*
|
|
* Annotation to use where the code might block or seize to make
|
|
* progress pending resume completion.
|
|
*/
|
|
void xe_pm_might_block_on_suspend(void)
|
|
{
|
|
lock_map_acquire(&xe_pm_block_lockdep_map);
|
|
lock_map_release(&xe_pm_block_lockdep_map);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_block_on_suspend() - Block pending suspend.
|
|
* @xe: The xe device about to be suspended.
|
|
*
|
|
* Block if the pm notifier has start evicting bos, to avoid
|
|
* racing and validating those bos back. The function is
|
|
* annotated to ensure no locks are held that are also grabbed
|
|
* in the pm notifier or the device suspend / resume.
|
|
* This is intended to be used by freezable tasks only.
|
|
* (Not freezable workqueues), with the intention that the function
|
|
* returns %-ERESTARTSYS when tasks are frozen during suspend,
|
|
* and allows the task to freeze. The caller must be able to
|
|
* handle the %-ERESTARTSYS.
|
|
*
|
|
* Return: %0 on success, %-ERESTARTSYS on signal pending or
|
|
* if freezing requested.
|
|
*/
|
|
int xe_pm_block_on_suspend(struct xe_device *xe)
|
|
{
|
|
xe_pm_might_block_on_suspend();
|
|
|
|
return wait_for_completion_interruptible(&xe->pm_block);
|
|
}
|
|
|
|
/**
|
|
* xe_rpm_reclaim_safe() - Whether runtime resume can be done from reclaim context
|
|
* @xe: The xe device.
|
|
*
|
|
* Return: true if it is safe to runtime resume from reclaim context.
|
|
* false otherwise.
|
|
*/
|
|
bool xe_rpm_reclaim_safe(const struct xe_device *xe)
|
|
{
|
|
return !xe->d3cold.capable;
|
|
}
|
|
|
|
static void xe_rpm_lockmap_acquire(const struct xe_device *xe)
|
|
{
|
|
lock_map_acquire(xe_rpm_reclaim_safe(xe) ?
|
|
&xe_pm_runtime_nod3cold_map :
|
|
&xe_pm_runtime_d3cold_map);
|
|
}
|
|
|
|
static void xe_rpm_lockmap_release(const struct xe_device *xe)
|
|
{
|
|
lock_map_release(xe_rpm_reclaim_safe(xe) ?
|
|
&xe_pm_runtime_nod3cold_map :
|
|
&xe_pm_runtime_d3cold_map);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle
|
|
* @xe: xe device instance
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
int xe_pm_suspend(struct xe_device *xe)
|
|
{
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err;
|
|
|
|
drm_dbg(&xe->drm, "Suspending device\n");
|
|
xe_pm_block_begin_signalling();
|
|
trace_xe_pm_suspend(xe, __builtin_return_address(0));
|
|
|
|
err = xe_pxp_pm_suspend(xe->pxp);
|
|
if (err)
|
|
goto err;
|
|
|
|
xe_late_bind_wait_for_worker_completion(&xe->late_bind);
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_suspend_prepare(gt);
|
|
|
|
xe_display_pm_suspend(xe);
|
|
|
|
/* FIXME: Super racey... */
|
|
err = xe_bo_evict_all(xe);
|
|
if (err)
|
|
goto err_display;
|
|
|
|
for_each_gt(gt, xe, id) {
|
|
err = xe_gt_suspend(gt);
|
|
if (err)
|
|
goto err_display;
|
|
}
|
|
|
|
xe_irq_suspend(xe);
|
|
|
|
xe_display_pm_suspend_late(xe);
|
|
|
|
xe_i2c_pm_suspend(xe);
|
|
|
|
drm_dbg(&xe->drm, "Device suspended\n");
|
|
xe_pm_block_end_signalling();
|
|
|
|
return 0;
|
|
|
|
err_display:
|
|
xe_display_pm_resume(xe);
|
|
xe_pxp_pm_resume(xe->pxp);
|
|
err:
|
|
drm_dbg(&xe->drm, "Device suspend failed %d\n", err);
|
|
xe_pm_block_end_signalling();
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0
|
|
* @xe: xe device instance
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
int xe_pm_resume(struct xe_device *xe)
|
|
{
|
|
struct xe_tile *tile;
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err;
|
|
|
|
xe_pm_block_begin_signalling();
|
|
drm_dbg(&xe->drm, "Resuming device\n");
|
|
trace_xe_pm_resume(xe, __builtin_return_address(0));
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_idle_disable_c6(gt);
|
|
|
|
for_each_tile(tile, xe, id)
|
|
xe_wa_apply_tile_workarounds(tile);
|
|
|
|
err = xe_pcode_ready(xe, true);
|
|
if (err)
|
|
return err;
|
|
|
|
xe_display_pm_resume_early(xe);
|
|
|
|
/*
|
|
* This only restores pinned memory which is the memory required for the
|
|
* GT(s) to resume.
|
|
*/
|
|
err = xe_bo_restore_early(xe);
|
|
if (err)
|
|
goto err;
|
|
|
|
xe_i2c_pm_resume(xe, true);
|
|
|
|
xe_irq_resume(xe);
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_resume(gt);
|
|
|
|
xe_display_pm_resume(xe);
|
|
|
|
err = xe_bo_restore_late(xe);
|
|
if (err)
|
|
goto err;
|
|
|
|
xe_pxp_pm_resume(xe->pxp);
|
|
|
|
if (IS_VF_CCS_READY(xe))
|
|
xe_sriov_vf_ccs_register_context(xe);
|
|
|
|
xe_late_bind_fw_load(&xe->late_bind);
|
|
|
|
drm_dbg(&xe->drm, "Device resumed\n");
|
|
xe_pm_block_end_signalling();
|
|
return 0;
|
|
err:
|
|
drm_dbg(&xe->drm, "Device resume failed %d\n", err);
|
|
xe_pm_block_end_signalling();
|
|
return err;
|
|
}
|
|
|
|
static bool xe_pm_pci_d3cold_capable(struct xe_device *xe)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
|
|
struct pci_dev *root_pdev;
|
|
|
|
root_pdev = pcie_find_root_port(pdev);
|
|
if (!root_pdev)
|
|
return false;
|
|
|
|
/* D3Cold requires PME capability */
|
|
if (!pci_pme_capable(root_pdev, PCI_D3cold)) {
|
|
drm_dbg(&xe->drm, "d3cold: PME# not supported\n");
|
|
return false;
|
|
}
|
|
|
|
/* D3Cold requires _PR3 power resource */
|
|
if (!pci_pr3_present(root_pdev)) {
|
|
drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void xe_pm_runtime_init(struct xe_device *xe)
|
|
{
|
|
struct device *dev = xe->drm.dev;
|
|
|
|
/* Our current VFs do not support RPM. so, disable it */
|
|
if (IS_SRIOV_VF(xe))
|
|
return;
|
|
|
|
/*
|
|
* Disable the system suspend direct complete optimization.
|
|
* We need to ensure that the regular device suspend/resume functions
|
|
* are called since our runtime_pm cannot guarantee local memory
|
|
* eviction for d3cold.
|
|
* TODO: Check HDA audio dependencies claimed by i915, and then enforce
|
|
* this option to integrated graphics as well.
|
|
*/
|
|
if (IS_DGFX(xe))
|
|
dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
|
|
|
|
pm_runtime_use_autosuspend(dev);
|
|
pm_runtime_set_autosuspend_delay(dev, 1000);
|
|
pm_runtime_set_active(dev);
|
|
pm_runtime_allow(dev);
|
|
pm_runtime_mark_last_busy(dev);
|
|
pm_runtime_put(dev);
|
|
}
|
|
|
|
int xe_pm_init_early(struct xe_device *xe)
|
|
{
|
|
int err;
|
|
|
|
INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list);
|
|
|
|
err = drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock);
|
|
if (err)
|
|
return err;
|
|
|
|
err = drmm_mutex_init(&xe->drm, &xe->d3cold.lock);
|
|
if (err)
|
|
return err;
|
|
|
|
xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe);
|
|
return 0;
|
|
}
|
|
ALLOW_ERROR_INJECTION(xe_pm_init_early, ERRNO); /* See xe_pci_probe() */
|
|
|
|
static u32 vram_threshold_value(struct xe_device *xe)
|
|
{
|
|
/* FIXME: D3Cold temporarily disabled by default on BMG */
|
|
if (xe->info.platform == XE_BATTLEMAGE)
|
|
return 0;
|
|
|
|
return DEFAULT_VRAM_THRESHOLD;
|
|
}
|
|
|
|
static void xe_pm_wake_rebind_workers(struct xe_device *xe)
|
|
{
|
|
struct xe_vm *vm, *next;
|
|
|
|
mutex_lock(&xe->rebind_resume_lock);
|
|
list_for_each_entry_safe(vm, next, &xe->rebind_resume_list,
|
|
preempt.pm_activate_link) {
|
|
list_del_init(&vm->preempt.pm_activate_link);
|
|
xe_vm_resume_rebind_worker(vm);
|
|
}
|
|
mutex_unlock(&xe->rebind_resume_lock);
|
|
}
|
|
|
|
static int xe_pm_notifier_callback(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct xe_device *xe = container_of(nb, struct xe_device, pm_notifier);
|
|
int err = 0;
|
|
|
|
switch (action) {
|
|
case PM_HIBERNATION_PREPARE:
|
|
case PM_SUSPEND_PREPARE:
|
|
{
|
|
struct xe_validation_ctx ctx;
|
|
|
|
reinit_completion(&xe->pm_block);
|
|
xe_pm_block_begin_signalling();
|
|
xe_pm_runtime_get(xe);
|
|
(void)xe_validation_ctx_init(&ctx, &xe->val, NULL,
|
|
(struct xe_val_flags) {.exclusive = true});
|
|
err = xe_bo_evict_all_user(xe);
|
|
xe_validation_ctx_fini(&ctx);
|
|
if (err)
|
|
drm_dbg(&xe->drm, "Notifier evict user failed (%d)\n", err);
|
|
|
|
err = xe_bo_notifier_prepare_all_pinned(xe);
|
|
if (err)
|
|
drm_dbg(&xe->drm, "Notifier prepare pin failed (%d)\n", err);
|
|
/*
|
|
* Keep the runtime pm reference until post hibernation / post suspend to
|
|
* avoid a runtime suspend interfering with evicted objects or backup
|
|
* allocations.
|
|
*/
|
|
xe_pm_block_end_signalling();
|
|
break;
|
|
}
|
|
case PM_POST_HIBERNATION:
|
|
case PM_POST_SUSPEND:
|
|
complete_all(&xe->pm_block);
|
|
xe_pm_wake_rebind_workers(xe);
|
|
xe_bo_notifier_unprepare_all_pinned(xe);
|
|
xe_pm_runtime_put(xe);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/**
|
|
* xe_pm_init - Initialize Xe Power Management
|
|
* @xe: xe device instance
|
|
*
|
|
* This component is responsible for System and Device sleep states.
|
|
*
|
|
* Returns 0 for success, negative error code otherwise.
|
|
*/
|
|
int xe_pm_init(struct xe_device *xe)
|
|
{
|
|
u32 vram_threshold;
|
|
int err;
|
|
|
|
xe->pm_notifier.notifier_call = xe_pm_notifier_callback;
|
|
err = register_pm_notifier(&xe->pm_notifier);
|
|
if (err)
|
|
return err;
|
|
|
|
err = drmm_mutex_init(&xe->drm, &xe->rebind_resume_lock);
|
|
if (err)
|
|
goto err_unregister;
|
|
|
|
init_completion(&xe->pm_block);
|
|
complete_all(&xe->pm_block);
|
|
INIT_LIST_HEAD(&xe->rebind_resume_list);
|
|
|
|
/* For now suspend/resume is only allowed with GuC */
|
|
if (!xe_device_uc_enabled(xe))
|
|
return 0;
|
|
|
|
if (xe->d3cold.capable) {
|
|
vram_threshold = vram_threshold_value(xe);
|
|
err = xe_pm_set_vram_threshold(xe, vram_threshold);
|
|
if (err)
|
|
goto err_unregister;
|
|
}
|
|
|
|
xe_pm_runtime_init(xe);
|
|
return 0;
|
|
|
|
err_unregister:
|
|
unregister_pm_notifier(&xe->pm_notifier);
|
|
return err;
|
|
}
|
|
|
|
static void xe_pm_runtime_fini(struct xe_device *xe)
|
|
{
|
|
struct device *dev = xe->drm.dev;
|
|
|
|
/* Our current VFs do not support RPM. so, disable it */
|
|
if (IS_SRIOV_VF(xe))
|
|
return;
|
|
|
|
pm_runtime_get_sync(dev);
|
|
pm_runtime_forbid(dev);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_fini - Finalize PM
|
|
* @xe: xe device instance
|
|
*/
|
|
void xe_pm_fini(struct xe_device *xe)
|
|
{
|
|
if (xe_device_uc_enabled(xe))
|
|
xe_pm_runtime_fini(xe);
|
|
|
|
unregister_pm_notifier(&xe->pm_notifier);
|
|
}
|
|
|
|
static void xe_pm_write_callback_task(struct xe_device *xe,
|
|
struct task_struct *task)
|
|
{
|
|
WRITE_ONCE(xe->pm_callback_task, task);
|
|
|
|
/*
|
|
* Just in case it's somehow possible for our writes to be reordered to
|
|
* the extent that something else re-uses the task written in
|
|
* pm_callback_task. For example after returning from the callback, but
|
|
* before the reordered write that resets pm_callback_task back to NULL.
|
|
*/
|
|
smp_mb(); /* pairs with xe_pm_read_callback_task */
|
|
}
|
|
|
|
struct task_struct *xe_pm_read_callback_task(struct xe_device *xe)
|
|
{
|
|
smp_mb(); /* pairs with xe_pm_write_callback_task */
|
|
|
|
return READ_ONCE(xe->pm_callback_task);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_suspended - Check if runtime_pm state is suspended
|
|
* @xe: xe device instance
|
|
*
|
|
* This does not provide any guarantee that the device is going to remain
|
|
* suspended as it might be racing with the runtime state transitions.
|
|
* It can be used only as a non-reliable assertion, to ensure that we are not in
|
|
* the sleep state while trying to access some memory for instance.
|
|
*
|
|
* Returns true if PCI device is suspended, false otherwise.
|
|
*/
|
|
bool xe_pm_runtime_suspended(struct xe_device *xe)
|
|
{
|
|
return pm_runtime_suspended(xe->drm.dev);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_suspend - Prepare our device for D3hot/D3Cold
|
|
* @xe: xe device instance
|
|
*
|
|
* Returns 0 for success, negative error code otherwise.
|
|
*/
|
|
int xe_pm_runtime_suspend(struct xe_device *xe)
|
|
{
|
|
struct xe_bo *bo, *on;
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err = 0;
|
|
|
|
trace_xe_pm_runtime_suspend(xe, __builtin_return_address(0));
|
|
/* Disable access_ongoing asserts and prevent recursive pm calls */
|
|
xe_pm_write_callback_task(xe, current);
|
|
|
|
/*
|
|
* The actual xe_pm_runtime_put() is always async underneath, so
|
|
* exactly where that is called should makes no difference to us. However
|
|
* we still need to be very careful with the locks that this callback
|
|
* acquires and the locks that are acquired and held by any callers of
|
|
* xe_runtime_pm_get(). We already have the matching annotation
|
|
* on that side, but we also need it here. For example lockdep should be
|
|
* able to tell us if the following scenario is in theory possible:
|
|
*
|
|
* CPU0 | CPU1 (kworker)
|
|
* lock(A) |
|
|
* | xe_pm_runtime_suspend()
|
|
* | lock(A)
|
|
* xe_pm_runtime_get() |
|
|
*
|
|
* This will clearly deadlock since rpm core needs to wait for
|
|
* xe_pm_runtime_suspend() to complete, but here we are holding lock(A)
|
|
* on CPU0 which prevents CPU1 making forward progress. With the
|
|
* annotation here and in xe_pm_runtime_get() lockdep will see
|
|
* the potential lock inversion and give us a nice splat.
|
|
*/
|
|
xe_rpm_lockmap_acquire(xe);
|
|
|
|
err = xe_pxp_pm_suspend(xe->pxp);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify
|
|
* also checks and deletes bo entry from user fault list.
|
|
*/
|
|
mutex_lock(&xe->mem_access.vram_userfault.lock);
|
|
list_for_each_entry_safe(bo, on,
|
|
&xe->mem_access.vram_userfault.list, vram_userfault_link)
|
|
xe_bo_runtime_pm_release_mmap_offset(bo);
|
|
mutex_unlock(&xe->mem_access.vram_userfault.lock);
|
|
|
|
xe_display_pm_runtime_suspend(xe);
|
|
|
|
if (xe->d3cold.allowed) {
|
|
err = xe_bo_evict_all(xe);
|
|
if (err)
|
|
goto out_resume;
|
|
}
|
|
|
|
for_each_gt(gt, xe, id) {
|
|
err = xe_gt_suspend(gt);
|
|
if (err)
|
|
goto out_resume;
|
|
}
|
|
|
|
xe_irq_suspend(xe);
|
|
|
|
xe_display_pm_runtime_suspend_late(xe);
|
|
|
|
xe_i2c_pm_suspend(xe);
|
|
|
|
xe_rpm_lockmap_release(xe);
|
|
xe_pm_write_callback_task(xe, NULL);
|
|
return 0;
|
|
|
|
out_resume:
|
|
xe_display_pm_runtime_resume(xe);
|
|
xe_pxp_pm_resume(xe->pxp);
|
|
out:
|
|
xe_rpm_lockmap_release(xe);
|
|
xe_pm_write_callback_task(xe, NULL);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_resume - Waking up from D3hot/D3Cold
|
|
* @xe: xe device instance
|
|
*
|
|
* Returns 0 for success, negative error code otherwise.
|
|
*/
|
|
int xe_pm_runtime_resume(struct xe_device *xe)
|
|
{
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err = 0;
|
|
|
|
trace_xe_pm_runtime_resume(xe, __builtin_return_address(0));
|
|
/* Disable access_ongoing asserts and prevent recursive pm calls */
|
|
xe_pm_write_callback_task(xe, current);
|
|
|
|
xe_rpm_lockmap_acquire(xe);
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_idle_disable_c6(gt);
|
|
|
|
if (xe->d3cold.allowed) {
|
|
err = xe_pcode_ready(xe, true);
|
|
if (err)
|
|
goto out;
|
|
|
|
xe_display_pm_resume_early(xe);
|
|
|
|
/*
|
|
* This only restores pinned memory which is the memory
|
|
* required for the GT(s) to resume.
|
|
*/
|
|
err = xe_bo_restore_early(xe);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
xe_i2c_pm_resume(xe, xe->d3cold.allowed);
|
|
|
|
xe_irq_resume(xe);
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_resume(gt);
|
|
|
|
xe_display_pm_runtime_resume(xe);
|
|
|
|
if (xe->d3cold.allowed) {
|
|
err = xe_bo_restore_late(xe);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
xe_pxp_pm_resume(xe->pxp);
|
|
|
|
if (IS_VF_CCS_READY(xe))
|
|
xe_sriov_vf_ccs_register_context(xe);
|
|
|
|
if (xe->d3cold.allowed)
|
|
xe_late_bind_fw_load(&xe->late_bind);
|
|
|
|
out:
|
|
xe_rpm_lockmap_release(xe);
|
|
xe_pm_write_callback_task(xe, NULL);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* For places where resume is synchronous it can be quite easy to deadlock
|
|
* if we are not careful. Also in practice it might be quite timing
|
|
* sensitive to ever see the 0 -> 1 transition with the callers locks
|
|
* held, so deadlocks might exist but are hard for lockdep to ever see.
|
|
* With this in mind, help lockdep learn about the potentially scary
|
|
* stuff that can happen inside the runtime_resume callback by acquiring
|
|
* a dummy lock (it doesn't protect anything and gets compiled out on
|
|
* non-debug builds). Lockdep then only needs to see the
|
|
* xe_pm_runtime_xxx_map -> runtime_resume callback once, and then can
|
|
* hopefully validate all the (callers_locks) -> xe_pm_runtime_xxx_map.
|
|
* For example if the (callers_locks) are ever grabbed in the
|
|
* runtime_resume callback, lockdep should give us a nice splat.
|
|
*/
|
|
static void xe_rpm_might_enter_cb(const struct xe_device *xe)
|
|
{
|
|
xe_rpm_lockmap_acquire(xe);
|
|
xe_rpm_lockmap_release(xe);
|
|
}
|
|
|
|
/*
|
|
* Prime the lockdep maps for known locking orders that need to
|
|
* be supported but that may not always occur on all systems.
|
|
*/
|
|
static void xe_pm_runtime_lockdep_prime(void)
|
|
{
|
|
struct dma_resv lockdep_resv;
|
|
|
|
dma_resv_init(&lockdep_resv);
|
|
lock_map_acquire(&xe_pm_runtime_d3cold_map);
|
|
/* D3Cold takes the dma_resv locks to evict bos */
|
|
dma_resv_lock(&lockdep_resv, NULL);
|
|
dma_resv_unlock(&lockdep_resv);
|
|
lock_map_release(&xe_pm_runtime_d3cold_map);
|
|
|
|
/* Shrinkers might like to wake up the device under reclaim. */
|
|
fs_reclaim_acquire(GFP_KERNEL);
|
|
lock_map_acquire(&xe_pm_runtime_nod3cold_map);
|
|
lock_map_release(&xe_pm_runtime_nod3cold_map);
|
|
fs_reclaim_release(GFP_KERNEL);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_get - Get a runtime_pm reference and resume synchronously
|
|
* @xe: xe device instance
|
|
*
|
|
* When possible, scope-based runtime PM (through guard(xe_pm_runtime)) is
|
|
* be preferred over direct usage of this function. Manual get/put handling
|
|
* should only be used when the function contains goto-based logic which
|
|
* can break scope-based handling, or when the lifetime of the runtime PM
|
|
* reference does not match a specific scope (e.g., runtime PM obtained in one
|
|
* function and released in a different one).
|
|
*/
|
|
void xe_pm_runtime_get(struct xe_device *xe)
|
|
{
|
|
trace_xe_pm_runtime_get(xe, __builtin_return_address(0));
|
|
pm_runtime_get_noresume(xe->drm.dev);
|
|
|
|
if (xe_pm_read_callback_task(xe) == current)
|
|
return;
|
|
|
|
xe_rpm_might_enter_cb(xe);
|
|
pm_runtime_resume(xe->drm.dev);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_put - Put the runtime_pm reference back and mark as idle
|
|
* @xe: xe device instance
|
|
*/
|
|
void xe_pm_runtime_put(struct xe_device *xe)
|
|
{
|
|
trace_xe_pm_runtime_put(xe, __builtin_return_address(0));
|
|
if (xe_pm_read_callback_task(xe) == current) {
|
|
pm_runtime_put_noidle(xe->drm.dev);
|
|
} else {
|
|
pm_runtime_mark_last_busy(xe->drm.dev);
|
|
pm_runtime_put(xe->drm.dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_get_ioctl - Get a runtime_pm reference before ioctl
|
|
* @xe: xe device instance
|
|
*
|
|
* When possible, scope-based runtime PM (through
|
|
* ACQUIRE(xe_pm_runtime_ioctl, ...)) is be preferred over direct usage of this
|
|
* function. Manual get/put handling should only be used when the function
|
|
* contains goto-based logic which can break scope-based handling, or when the
|
|
* lifetime of the runtime PM reference does not match a specific scope (e.g.,
|
|
* runtime PM obtained in one function and released in a different one).
|
|
*
|
|
* Returns: Any number greater than or equal to 0 for success, negative error
|
|
* code otherwise.
|
|
*/
|
|
int xe_pm_runtime_get_ioctl(struct xe_device *xe)
|
|
{
|
|
trace_xe_pm_runtime_get_ioctl(xe, __builtin_return_address(0));
|
|
if (WARN_ON(xe_pm_read_callback_task(xe) == current))
|
|
return -ELOOP;
|
|
|
|
xe_rpm_might_enter_cb(xe);
|
|
return pm_runtime_get_sync(xe->drm.dev);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_get_if_active - Get a runtime_pm reference if device active
|
|
* @xe: xe device instance
|
|
*
|
|
* Return: True if device is awake (regardless the previous number of references)
|
|
* and a new reference was taken, false otherwise.
|
|
*/
|
|
bool xe_pm_runtime_get_if_active(struct xe_device *xe)
|
|
{
|
|
return pm_runtime_get_if_active(xe->drm.dev) > 0;
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_get_if_in_use - Get a new reference if device is active with previous ref taken
|
|
* @xe: xe device instance
|
|
*
|
|
* Return: True if device is awake, a previous reference had been already taken,
|
|
* and a new reference was now taken, false otherwise.
|
|
*/
|
|
bool xe_pm_runtime_get_if_in_use(struct xe_device *xe)
|
|
{
|
|
if (xe_pm_read_callback_task(xe) == current) {
|
|
/* The device is awake, grab the ref and move on */
|
|
pm_runtime_get_noresume(xe->drm.dev);
|
|
return true;
|
|
}
|
|
|
|
return pm_runtime_get_if_in_use(xe->drm.dev) > 0;
|
|
}
|
|
|
|
/*
|
|
* Very unreliable! Should only be used to suppress the false positive case
|
|
* in the missing outer rpm protection warning.
|
|
*/
|
|
static bool xe_pm_suspending_or_resuming(struct xe_device *xe)
|
|
{
|
|
#ifdef CONFIG_PM
|
|
struct device *dev = xe->drm.dev;
|
|
|
|
return dev->power.runtime_status == RPM_SUSPENDING ||
|
|
dev->power.runtime_status == RPM_RESUMING ||
|
|
pm_suspend_in_progress();
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_get_noresume - Bump runtime PM usage counter without resuming
|
|
* @xe: xe device instance
|
|
*
|
|
* This function should be used in inner places where it is surely already
|
|
* protected by outer-bound callers of `xe_pm_runtime_get`.
|
|
* It will warn if not protected.
|
|
* The reference should be put back after this function regardless, since it
|
|
* will always bump the usage counter, regardless.
|
|
*
|
|
* When possible, scope-based runtime PM (through guard(xe_pm_runtime_noresume))
|
|
* is be preferred over direct usage of this function. Manual get/put handling
|
|
* should only be used when the function contains goto-based logic which can
|
|
* break scope-based handling, or when the lifetime of the runtime PM reference
|
|
* does not match a specific scope (e.g., runtime PM obtained in one function
|
|
* and released in a different one).
|
|
*/
|
|
void xe_pm_runtime_get_noresume(struct xe_device *xe)
|
|
{
|
|
bool ref;
|
|
|
|
ref = xe_pm_runtime_get_if_in_use(xe);
|
|
|
|
if (!ref) {
|
|
pm_runtime_get_noresume(xe->drm.dev);
|
|
drm_WARN(&xe->drm, !xe_pm_suspending_or_resuming(xe),
|
|
"Missing outer runtime PM protection\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_pm_runtime_resume_and_get - Resume, then get a runtime_pm ref if awake.
|
|
* @xe: xe device instance
|
|
*
|
|
* Returns: True if device is awake and the reference was taken, false otherwise.
|
|
*/
|
|
bool xe_pm_runtime_resume_and_get(struct xe_device *xe)
|
|
{
|
|
if (xe_pm_read_callback_task(xe) == current) {
|
|
/* The device is awake, grab the ref and move on */
|
|
pm_runtime_get_noresume(xe->drm.dev);
|
|
return true;
|
|
}
|
|
|
|
xe_rpm_might_enter_cb(xe);
|
|
return pm_runtime_resume_and_get(xe->drm.dev) >= 0;
|
|
}
|
|
|
|
/**
|
|
* xe_pm_assert_unbounded_bridge - Disable PM on unbounded pcie parent bridge
|
|
* @xe: xe device instance
|
|
*/
|
|
void xe_pm_assert_unbounded_bridge(struct xe_device *xe)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
|
|
struct pci_dev *bridge = pci_upstream_bridge(pdev);
|
|
|
|
if (!bridge)
|
|
return;
|
|
|
|
if (!bridge->driver) {
|
|
drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n");
|
|
device_set_pm_not_required(&pdev->dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_pm_set_vram_threshold - Set a VRAM threshold for allowing/blocking D3Cold
|
|
* @xe: xe device instance
|
|
* @threshold: VRAM size in MiB for the D3cold threshold
|
|
*
|
|
* Return:
|
|
* * 0 - success
|
|
* * -EINVAL - invalid argument
|
|
*/
|
|
int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold)
|
|
{
|
|
struct ttm_resource_manager *man;
|
|
u32 vram_total_mb = 0;
|
|
int i;
|
|
|
|
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
|
|
man = ttm_manager_type(&xe->ttm, i);
|
|
if (man)
|
|
vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024);
|
|
}
|
|
|
|
drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb);
|
|
|
|
if (threshold > vram_total_mb)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&xe->d3cold.lock);
|
|
xe->d3cold.vram_threshold = threshold;
|
|
mutex_unlock(&xe->d3cold.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_pm_d3cold_allowed_toggle - Check conditions to toggle d3cold.allowed
|
|
* @xe: xe device instance
|
|
*
|
|
* To be called during runtime_pm idle callback.
|
|
* Check for all the D3Cold conditions ahead of runtime suspend.
|
|
*/
|
|
void xe_pm_d3cold_allowed_toggle(struct xe_device *xe)
|
|
{
|
|
struct ttm_resource_manager *man;
|
|
u32 total_vram_used_mb = 0;
|
|
u64 vram_used;
|
|
int i;
|
|
|
|
if (!xe->d3cold.capable) {
|
|
xe->d3cold.allowed = false;
|
|
return;
|
|
}
|
|
|
|
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
|
|
man = ttm_manager_type(&xe->ttm, i);
|
|
if (man) {
|
|
vram_used = ttm_resource_manager_usage(man);
|
|
total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024);
|
|
}
|
|
}
|
|
|
|
mutex_lock(&xe->d3cold.lock);
|
|
|
|
if (total_vram_used_mb < xe->d3cold.vram_threshold)
|
|
xe->d3cold.allowed = true;
|
|
else
|
|
xe->d3cold.allowed = false;
|
|
|
|
mutex_unlock(&xe->d3cold.lock);
|
|
}
|
|
|
|
/**
|
|
* xe_pm_module_init() - Perform xe_pm specific module initialization.
|
|
*
|
|
* Return: 0 on success. Currently doesn't fail.
|
|
*/
|
|
int __init xe_pm_module_init(void)
|
|
{
|
|
xe_pm_runtime_lockdep_prime();
|
|
return 0;
|
|
}
|