Files
u-boot/arch/arm/include/asm/io.h
Boon Khai Ng 38d49808d4 cache: Check dcache availability before calling cache functions
When the data cache (dcache) is disabled, calling related
status functions can lead to compilation errors due to
undefined references.

Adding a !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) check before
invoking dcache_status() (used in common/memsize.c:get_ram_size())
and mmu_status() (from arch/arm/include/asm/io.h).

Without this check, builds with dcache disabled will fail to compile.

Signed-off-by: Boon Khai Ng <boon.khai.ng@altera.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2025-09-30 14:29:55 +08:00

486 lines
14 KiB
C

/*
* I/O device access primitives. Based on early versions from the Linux kernel.
*
* Copyright (C) 1996-2000 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __ASM_ARM_IO_H
#define __ASM_ARM_IO_H
#include <linux/types.h>
#include <linux/kernel.h>
#include <asm/byteorder.h>
#include <asm/memory.h>
#include <asm/barriers.h>
static inline void sync(void)
{
}
#ifdef CONFIG_ARM64
#define __W "w"
#else
#define __W
#endif
#if CONFIG_IS_ENABLED(SYS_THUMB_BUILD)
#define __R "l"
#define __RM "=l"
#else
#define __R "r"
#define __RM "=r"
#endif
#ifdef CONFIG_KVM_VIRT_INS
/*
* The __raw_writeX/__raw_readX below should be converted to static inline
* functions. However doing so produces a lot of compilation warnings when
* called with a raw address. Convert these once the callers have been fixed.
*/
#define __raw_writeb(val, addr) \
do { \
asm volatile("strb %" __W "0, [%1]" \
: \
: __R ((u8)(val)), __R (addr)); \
} while (0)
#define __raw_readb(addr) \
({ \
u32 __val; \
asm volatile("ldrb %" __W "0, [%1]" \
: __RM (__val) \
: __R (addr)); \
__val; \
})
#define __raw_writew(val, addr) \
do { \
asm volatile("strh %" __W "0, [%1]" \
: \
: __R ((u16)(val)), __R (addr)); \
} while (0)
#define __raw_readw(addr) \
({ \
u32 __val; \
asm volatile("ldrh %" __W "0, [%1]" \
: __RM (__val) \
: __R (addr)); \
__val; \
})
#define __raw_writel(val, addr) \
do { \
asm volatile("str %" __W "0, [%1]" \
: \
: __R ((u32)(val)), __R (addr)); \
} while (0)
#define __raw_readl(addr) \
({ \
u32 __val; \
asm volatile("ldr %" __W "0, [%1]" \
: __RM (__val) \
: __R (addr)); \
__val; \
})
#define __raw_writeq(val, addr) \
do { \
asm volatile("str %0, [%1]" \
: \
: __R ((u64)(val)), __R (addr)); \
} while (0)
#define __raw_readq(addr) \
({ \
u64 __val; \
asm volatile("ldr %0, [%1]" \
: __RM (__val) \
: __R (addr)); \
__val; \
})
#else
/* Generic virtual read/write. */
#define __raw_readb(a) (*(volatile unsigned char *)(a))
#define __raw_readw(a) (*(volatile unsigned short *)(a))
#define __raw_readl(a) (*(volatile unsigned int *)(a))
#define __raw_readq(a) (*(volatile unsigned long long *)(a))
#define __raw_writeb(v, a) (*(volatile unsigned char *)(a) = (v))
#define __raw_writew(v, a) (*(volatile unsigned short *)(a) = (v))
#define __raw_writel(v, a) (*(volatile unsigned int *)(a) = (v))
#define __raw_writeq(v, a) (*(volatile unsigned long long *)(a) = (v))
#endif
static inline void __raw_writesb(unsigned long addr, const void *data,
int bytelen)
{
uint8_t *buf = (uint8_t *)data;
while(bytelen--)
__raw_writeb(*buf++, addr);
}
static inline void __raw_writesw(unsigned long addr, const void *data,
int wordlen)
{
uint16_t *buf = (uint16_t *)data;
while(wordlen--)
__raw_writew(*buf++, addr);
}
static inline void __raw_writesl(unsigned long addr, const void *data,
int longlen)
{
uint32_t *buf = (uint32_t *)data;
while(longlen--)
__raw_writel(*buf++, addr);
}
static inline void __raw_readsb(unsigned long addr, void *data, int bytelen)
{
uint8_t *buf = (uint8_t *)data;
while(bytelen--)
*buf++ = __raw_readb(addr);
}
static inline void __raw_readsw(unsigned long addr, void *data, int wordlen)
{
uint16_t *buf = (uint16_t *)data;
while(wordlen--)
*buf++ = __raw_readw(addr);
}
static inline void __raw_readsl(unsigned long addr, void *data, int longlen)
{
uint32_t *buf = (uint32_t *)data;
while(longlen--)
*buf++ = __raw_readl(addr);
}
/*
* TODO: The kernel offers some more advanced versions of barriers, it might
* have some advantages to use them instead of the simple one here.
*/
#define mb() dsb()
#define rmb() dsb()
#define wmb() dsb()
#define __iormb() dmb()
#define __iowmb() dmb()
#define smp_processor_id() 0
#define writeb(v, c) ({ u8 __v = v; __iowmb(); writeb_relaxed(__v, c); __v; })
#define writew(v, c) ({ u16 __v = v; __iowmb(); writew_relaxed(__v, c); __v; })
#define writel(v, c) ({ u32 __v = v; __iowmb(); writel_relaxed(__v, c); __v; })
#define writeq(v, c) ({ u64 __v = v; __iowmb(); writeq_relaxed(__v, c); __v; })
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
#define readq(c) ({ u64 __v = readq_relaxed(c); __iormb(); __v; })
/*
* Relaxed I/O memory access primitives. These follow the Device memory
* ordering rules but do not guarantee any ordering relative to Normal memory
* accesses.
*/
#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
__raw_readw(c)); __r; })
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
__raw_readl(c)); __r; })
#define readq_relaxed(c) ({ u64 __r = le64_to_cpu((__force __le64) \
__raw_readq(c)); __r; })
#define writeb_relaxed(v, c) __raw_writeb((v), (c))
#define writew_relaxed(v, c) __raw_writew((__force u16)cpu_to_le16(v), (c))
#define writel_relaxed(v, c) __raw_writel((__force u32)cpu_to_le32(v), (c))
#define writeq_relaxed(v, c) __raw_writeq((__force u64)cpu_to_le64(v), (c))
/*
* The compiler seems to be incapable of optimising constants
* properly. Spell it out to the compiler in some cases.
* These are only valid for small values of "off" (< 1<<12)
*/
#define __raw_base_writeb(val,base,off) __arch_base_putb(val,base,off)
#define __raw_base_writew(val,base,off) __arch_base_putw(val,base,off)
#define __raw_base_writel(val,base,off) __arch_base_putl(val,base,off)
#define __raw_base_readb(base,off) __arch_base_getb(base,off)
#define __raw_base_readw(base,off) __arch_base_getw(base,off)
#define __raw_base_readl(base,off) __arch_base_getl(base,off)
/*
* Clear and set bits in one shot. These macros can be used to clear and
* set multiple bits in a register using a single call. These macros can
* also be used to set a multiple-bit bit pattern using a mask, by
* specifying the mask in the 'clear' parameter and the new bit pattern
* in the 'set' parameter.
*/
#define out_arch(type,endian,a,v) __raw_write##type(cpu_to_##endian(v),a)
#define in_arch(type,endian,a) endian##_to_cpu(__raw_read##type(a))
#define out_le64(a,v) out_arch(q,le64,a,v)
#define out_le32(a,v) out_arch(l,le32,a,v)
#define out_le16(a,v) out_arch(w,le16,a,v)
#define in_le64(a) in_arch(q,le64,a)
#define in_le32(a) in_arch(l,le32,a)
#define in_le16(a) in_arch(w,le16,a)
#define out_be64(a,v) out_arch(l,be64,a,v)
#define out_be32(a,v) out_arch(l,be32,a,v)
#define out_be16(a,v) out_arch(w,be16,a,v)
#define in_be64(a) in_arch(l,be64,a)
#define in_be32(a) in_arch(l,be32,a)
#define in_be16(a) in_arch(w,be16,a)
#define out_64(a,v) __raw_writeq(v,a)
#define out_32(a,v) __raw_writel(v,a)
#define out_16(a,v) __raw_writew(v,a)
#define out_8(a,v) __raw_writeb(v,a)
#define in_64(a) __raw_readq(a)
#define in_32(a) __raw_readl(a)
#define in_16(a) __raw_readw(a)
#define in_8(a) __raw_readb(a)
#define clrbits(type, addr, clear) \
out_##type((addr), in_##type(addr) & ~(clear))
#define setbits(type, addr, set) \
out_##type((addr), in_##type(addr) | (set))
#define clrsetbits(type, addr, clear, set) \
out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
#define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
#define setbits_be32(addr, set) setbits(be32, addr, set)
#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
#define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
#define setbits_le32(addr, set) setbits(le32, addr, set)
#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
#define clrbits_32(addr, clear) clrbits(32, addr, clear)
#define setbits_32(addr, set) setbits(32, addr, set)
#define clrsetbits_32(addr, clear, set) clrsetbits(32, addr, clear, set)
#define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
#define setbits_be16(addr, set) setbits(be16, addr, set)
#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
#define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
#define setbits_le16(addr, set) setbits(le16, addr, set)
#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
#define clrbits_16(addr, clear) clrbits(16, addr, clear)
#define setbits_16(addr, set) setbits(16, addr, set)
#define clrsetbits_16(addr, clear, set) clrsetbits(16, addr, clear, set)
#define clrbits_8(addr, clear) clrbits(8, addr, clear)
#define setbits_8(addr, set) setbits(8, addr, set)
#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
#define clrbits_be64(addr, clear) clrbits(be64, addr, clear)
#define setbits_be64(addr, set) setbits(be64, addr, set)
#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
#define clrbits_le64(addr, clear) clrbits(le64, addr, clear)
#define setbits_le64(addr, set) setbits(le64, addr, set)
#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
#define clrbits_64(addr, clear) clrbits(64, addr, clear)
#define setbits_64(addr, set) setbits(64, addr, set)
#define clrsetbits_64(addr, clear, set) clrsetbits(64, addr, clear, set)
/*
* IO port access primitives
* -------------------------
*
* The ARM doesn't have special IO access instructions; all IO is memory
* mapped. Note that these are defined to perform little endian accesses
* only. Their primary purpose is to access PCI and ISA peripherals.
*
* Note that for a big endian machine, this implies that the following
* big endian mode connectivity is in place, as described by numerous
* ARM documents:
*
* PCI: D0-D7 D8-D15 D16-D23 D24-D31
* ARM: D24-D31 D16-D23 D8-D15 D0-D7
*
* The machine specific io.h include defines __io to translate an "IO"
* address to a memory address.
*
* Note that we prevent GCC re-ordering or caching values in expressions
* by introducing sequence points into the in*() definitions. Note that
* __raw_* do not guarantee this behaviour.
*
* The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
*/
#ifdef __io
#define outb(v,p) __raw_writeb(v,__io(p))
#define outw(v,p) __raw_writew(cpu_to_le16(v),__io(p))
#define outl(v,p) __raw_writel(cpu_to_le32(v),__io(p))
#define inb(p) ({ unsigned int __v = __raw_readb(__io(p)); __v; })
#define inw(p) ({ unsigned int __v = le16_to_cpu(__raw_readw(__io(p))); __v; })
#define inl(p) ({ unsigned int __v = le32_to_cpu(__raw_readl(__io(p))); __v; })
#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
#define insb(p,d,l) __raw_readsb(__io(p),d,l)
#define insw(p,d,l) __raw_readsw(__io(p),d,l)
#define insl(p,d,l) __raw_readsl(__io(p),d,l)
#endif
#define outb_p(val,port) outb((val),(port))
#define outw_p(val,port) outw((val),(port))
#define outl_p(val,port) outl((val),(port))
#define inb_p(port) inb((port))
#define inw_p(port) inw((port))
#define inl_p(port) inl((port))
#define outsb_p(port,from,len) outsb(port,from,len)
#define outsw_p(port,from,len) outsw(port,from,len)
#define outsl_p(port,from,len) outsl(port,from,len)
#define insb_p(port,to,len) insb(port,to,len)
#define insw_p(port,to,len) insw(port,to,len)
#define insl_p(port,to,len) insl(port,to,len)
#define writesl(a, d, s) __raw_writesl((unsigned long)a, d, s)
#define readsl(a, d, s) __raw_readsl((unsigned long)a, d, s)
#define writesw(a, d, s) __raw_writesw((unsigned long)a, d, s)
#define readsw(a, d, s) __raw_readsw((unsigned long)a, d, s)
#define writesb(a, d, s) __raw_writesb((unsigned long)a, d, s)
#define readsb(a, d, s) __raw_readsb((unsigned long)a, d, s)
/*
* String version of IO memory access ops:
*/
extern void _memcpy_fromio(void *, unsigned long, size_t);
extern void _memcpy_toio(unsigned long, const void *, size_t);
extern void _memset_io(unsigned long, int, size_t);
/* Optimized copy functions to read from/write to IO sapce */
#ifdef CONFIG_ARM64
#include <cpu_func.h>
/*
* Copy data from IO memory space to "real" memory space.
*/
static inline
void __memcpy_fromio(void *to, const volatile void __iomem *from, size_t count)
{
while (count && !IS_ALIGNED((unsigned long)from, 8)) {
*(u8 *)to = __raw_readb(from);
from++;
to++;
count--;
}
if (!CONFIG_IS_ENABLED(SYS_DCACHE_OFF)) {
if (mmu_status()) {
while (count >= 8) {
*(u64 *)to = __raw_readq(from);
from += 8;
to += 8;
count -= 8;
}
}
}
while (count) {
*(u8 *)to = __raw_readb(from);
from++;
to++;
count--;
}
}
/*
* Copy data from "real" memory space to IO memory space.
*/
static inline
void __memcpy_toio(volatile void __iomem *to, const void *from, size_t count)
{
while (count && !IS_ALIGNED((unsigned long)to, 8)) {
__raw_writeb(*(u8 *)from, to);
from++;
to++;
count--;
}
if (!CONFIG_IS_ENABLED(SYS_DCACHE_OFF)) {
if (mmu_status()) {
while (count >= 8) {
__raw_writeq(*(u64 *)from, to);
from += 8;
to += 8;
count -= 8;
}
}
}
while (count) {
__raw_writeb(*(u8 *)from, to);
from++;
to++;
count--;
}
}
/*
* "memset" on IO memory space.
*/
static inline
void __memset_io(volatile void __iomem *dst, int c, size_t count)
{
u64 qc = (u8)c;
qc |= qc << 8;
qc |= qc << 16;
qc |= qc << 32;
while (count && !IS_ALIGNED((unsigned long)dst, 8)) {
__raw_writeb(c, dst);
dst++;
count--;
}
while (count >= 8) {
__raw_writeq(qc, dst);
dst += 8;
count -= 8;
}
while (count) {
__raw_writeb(c, dst);
dst++;
count--;
}
}
#endif /* CONFIG_ARM64 */
#ifdef CONFIG_ARM64
#define memset_io(a, b, c) __memset_io((a), (b), (c))
#define memcpy_fromio(a, b, c) __memcpy_fromio((a), (b), (c))
#define memcpy_toio(a, b, c) __memcpy_toio((a), (b), (c))
#else
#define memset_io(a, b, c) memset((void *)(a), (b), (c))
#define memcpy_fromio(a, b, c) memcpy((a), (void *)(b), (c))
#define memcpy_toio(a, b, c) memcpy((void *)(a), (b), (c))
#endif
#include <asm-generic/io.h>
#include <iotrace.h>
#endif /* __ASM_ARM_IO_H */