drivers: sensor: icp101xx: Add icp101xx support

Use official TDK Invensense driver for icp101xx sensor in tdk_hal module.

Signed-off-by: Remi Buisson <remi.buisson@tdk.com>
This commit is contained in:
Remi Buisson
2025-02-06 09:45:19 +01:00
committed by Benjamin Cabé
parent fe796a7e22
commit a4d863163b
9 changed files with 320 additions and 352 deletions

View File

@@ -5,7 +5,7 @@
add_subdirectory_ifdef(CONFIG_ICM42605 icm42605)
add_subdirectory_ifdef(CONFIG_ICM42670 icm42670)
add_subdirectory_ifdef(CONFIG_ICM42688 icm42688)
add_subdirectory_ifdef(CONFIG_ICP10125 icp10125)
add_subdirectory_ifdef(CONFIG_ICP101XX icp101xx)
add_subdirectory_ifdef(CONFIG_MPU6050 mpu6050)
add_subdirectory_ifdef(CONFIG_MPU9250 mpu9250)
# zephyr-keep-sorted-stop

View File

@@ -5,7 +5,7 @@
source "drivers/sensor/tdk/icm42605/Kconfig"
source "drivers/sensor/tdk/icm42670/Kconfig"
source "drivers/sensor/tdk/icm42688/Kconfig"
source "drivers/sensor/tdk/icp10125/Kconfig"
source "drivers/sensor/tdk/icp101xx/Kconfig"
source "drivers/sensor/tdk/mpu6050/Kconfig"
source "drivers/sensor/tdk/mpu9250/Kconfig"
# zephyr-keep-sorted-stop

View File

@@ -1,6 +0,0 @@
# Copyright (c) 2022 Mizuki Agawa <agawa.mizuki@fujitsu.com>
# SPDX-License-Identifier: Apache-2.0
zephyr_library()
zephyr_library_sources(icp10125.c)

View File

@@ -1,23 +0,0 @@
# ICP10125 barometric pressure/temperature sensor configuration options
# Copyright (c) 2022 Mizuki Agawa <agawa.mizuki@fujitsu.com>
# SPDX-License-Identifier: Apache-2.0
menuconfig ICP10125
bool "ICP10125 Barometric Pressure & Temperature Sensor"
default y
depends on DT_HAS_INVENSENSE_ICP10125_ENABLED
select I2C
help
Enable driver for ICP10125 barometric pressure/temperature sensor.
if ICP10125
config ICP10125_CHECK_CRC
bool "Check the CRC of measument data"
imply CRC
default y
help
Verify the CRC checksum that appended to the measurement data.
endif # ICP10125

View File

@@ -1,321 +0,0 @@
/*
* Copyright (c) 2022 Mizuki Agawa <agawa.mizuki@fujitsu.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT invensense_icp10125
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/byteorder.h>
#ifdef CONFIG_ICP10125_CHECK_CRC
#include <zephyr/sys/crc.h>
#endif /* CONFIG_ICP10125_CHECK_CRC */
LOG_MODULE_REGISTER(ICP10125, CONFIG_SENSOR_LOG_LEVEL);
#define CRC_POLY 0x31
#define SENSOR_DATA_SIZE 2
#define AMBIENT_TEMP_DATA_NUM 1
#define PRESS_DATA_NUM 2
#define PRESS_AND_AMBIENT_TEMP_DATA_NUM (AMBIENT_TEMP_DATA_NUM + PRESS_DATA_NUM)
enum {
LOW_POWER,
NORMAL,
LOW_NOISE,
ULTRA_LOW_NOISE,
NUM_MEASURE_MODE
};
struct icp10125_data {
uint16_t raw_ambient_temp;
uint32_t raw_press;
float sensor_constants[4];
};
struct icp10125_dev_config {
struct i2c_dt_spec i2c;
uint8_t ambient_temp_mode;
uint8_t press_mode;
};
struct icp10125_cmd {
uint8_t data[2];
};
struct icp10125_sensor_data {
uint8_t data[2];
uint8_t crc;
};
struct icp10125_otp_read_setup {
struct icp10125_cmd cmd;
uint8_t data[3];
} __packed __aligned(1);
/* ambient temperature measurement command for each mode.
* (Section 5.2 MEASUREMENT COMMANDS in the Datasheet)
*/
static const struct icp10125_cmd ambient_temp_measurement_cmds[] = {
{{0x60, 0x9C}}, {{0x68, 0x25}}, {{0x70, 0xDF}}, {{0x78, 0x66}}
};
/* pressure measurement command for each mode.
* (Section 5.2 MEASUREMENT COMMANDS in the Datasheet)
*/
static const struct icp10125_cmd press_measurement_cmds[] = {
{{0x40, 0x1A}}, {{0x48, 0xA3}}, {{0x50, 0x59}}, {{0x59, 0xE0}}
};
/* Request preparation for OTP data read. It should issue before data read request.
* (Section 5.2 MEASUREMENT COMMANDS in the Datasheet)
*/
static const struct icp10125_otp_read_setup otp_read_setup = {
.cmd = {{0xC5, 0x95}},
.data = {0x00, 0x66, 0x9C}
};
/* OTP data read request.
* After issue this command 2byte x 4 sensor constant value can readable.
*/
static const struct icp10125_cmd otp_read_request_cmd = {{0xC7, 0xF7}};
/* The max conversion time for each modes.
* (Section 2.2 OPERATION MODES in the Datasheet)
*/
static const uint32_t conv_time_max[] = {1800, 6300, 23800, 94500};
/* The typical conversion time for each modes.
* (Section 2.2 OPERATION MODES in the Datasheet)
*/
static const uint32_t conv_time_typ[] = {1600, 5600, 20800, 83200};
/* The Datasheet has no mention of the constants and formulas.
* Instead, it shows only how to use it in the sample code.
* Since there is no detailed description in the ICP10125 product manual,
* the calculation of the pressure implements is the same as shown in
* the 5.11 SAMPLE CODE: EXAMPLE C SYNTAX
*/
static void icp10125_calculate_conversion_constants(const float *p_LUT, float *A, float *B,
float *C)
{
const float p_Pa[] = {45000.0, 80000.0, 105000.0};
*C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +
p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +
p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) /
(p_LUT[2] * (p_Pa[0] - p_Pa[1]) + p_LUT[0] * (p_Pa[1] - p_Pa[2]) +
p_LUT[1] * (p_Pa[2] - p_Pa[0]));
*A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * (*C)) /
(p_LUT[0] - p_LUT[1]);
*B = (p_Pa[0] - (*A)) * (p_LUT[0] + (*C));
}
static float icp10125_calc_calibrated_ambient_temp(const struct icp10125_data *data)
{
return -45.f + 175.f / 65536.f * data->raw_ambient_temp;
}
static float icp10125_calc_calibrated_press(const struct icp10125_data *data)
{
const float quadr_factor = 1 / 16777216.0;
const float offst_factor = 2048.0;
const float LUT_lower = 3.5 * (1 << 20);
const float LUT_upper = 11.5 * (1 << 20);
float t;
float in[3];
float A, B, C;
t = data->raw_ambient_temp - 32768.f;
in[0] = LUT_lower + (data->sensor_constants[0] * t * t) * quadr_factor;
in[1] = offst_factor * data->sensor_constants[3] +
(data->sensor_constants[1] * t * t) * quadr_factor;
in[2] = LUT_upper + (data->sensor_constants[2] * t * t) * quadr_factor;
icp10125_calculate_conversion_constants(in, &A, &B, &C);
return A + B / (C + data->raw_press);
}
/* End of porting the 5.11 SAMPLE CODE: EXAMPLE C SYNTAX */
static int icp10125_read_otp(const struct device *dev)
{
struct icp10125_data *data = dev->data;
struct icp10125_sensor_data sensor_data;
const struct icp10125_dev_config *cfg = dev->config;
int rc = 0;
rc = i2c_write_dt(&cfg->i2c, (uint8_t *)&otp_read_setup, sizeof(otp_read_setup));
if (rc < 0) {
LOG_ERR("Failed to write otp_read_setup.\n");
return rc;
}
for (size_t i = 0; i < ARRAY_SIZE(data->sensor_constants); i++) {
rc = i2c_write_dt(&cfg->i2c, (uint8_t *)&otp_read_request_cmd,
sizeof(otp_read_request_cmd));
if (rc < 0) {
LOG_ERR("Failed to write otp_read_request.\n");
return rc;
}
rc = i2c_read_dt(&cfg->i2c, (uint8_t *)&sensor_data, sizeof(sensor_data));
if (rc < 0) {
LOG_ERR("Failed to read otp_read_request.\n");
return rc;
}
data->sensor_constants[i] = sys_get_be16(sensor_data.data);
}
return 0;
}
#ifdef CONFIG_ICP10125_CHECK_CRC
static int icp10125_check_crc(const uint8_t *data, const size_t len)
{
/* Details of CRC are described in Chapter 5 Section 8 of the product
* specifications.
*/
return crc8(data, len, CRC_POLY, 0xFF, false);
}
#endif
static int icp10125_measure(const struct i2c_dt_spec *i2c, const struct icp10125_cmd *cmds,
const uint8_t mode, struct icp10125_sensor_data *sensor_data,
const size_t data_num)
{
int rc = 0;
rc = i2c_write_dt(i2c, (uint8_t *)&cmds[mode], sizeof(cmds[mode]));
if (rc < 0) {
LOG_ERR("Failed to start measurement.\n");
return rc;
}
/* Wait for the sensor to become readable.
* First wait for the typical time and then read.
* If that fails, wait until the time to surely became readable.
*/
k_sleep(K_USEC(conv_time_typ[mode]));
if (i2c_read_dt(i2c, (uint8_t *)sensor_data, sizeof(sensor_data[0]) * data_num) < 0) {
k_sleep(K_USEC(conv_time_max[mode] - conv_time_typ[mode]));
rc = i2c_read_dt(i2c, (uint8_t *)sensor_data, sizeof(sensor_data[0]) * data_num);
if (rc < 0) {
LOG_ERR("Failed to read measurement.\n");
return rc;
}
}
#ifdef CONFIG_ICP10125_CHECK_CRC
/* Calculate CRC from Chapter 5 Section 8 of ICP10125 Product manuals. */
for (size_t i = 0; i < data_num; i++) {
if (!icp10125_check_crc(sensor_data[i].data, SENSOR_DATA_SIZE)) {
LOG_ERR("Sensor data has invalid CRC.\n");
return -EIO;
}
}
#endif /* CONFIG_ICP10125_CHECK_CRC */
return 0;
}
static int icp10125_sample_fetch(const struct device *dev, const enum sensor_channel chan)
{
struct icp10125_data *data = dev->data;
const struct icp10125_dev_config *cfg = dev->config;
uint8_t endian_conversion[3];
struct icp10125_sensor_data sensor_data[PRESS_AND_AMBIENT_TEMP_DATA_NUM] = {0};
int rc = 0;
if (!(chan == SENSOR_CHAN_AMBIENT_TEMP || chan == SENSOR_CHAN_PRESS ||
chan == SENSOR_CHAN_ALL)) {
return -ENOTSUP;
}
if (chan == SENSOR_CHAN_AMBIENT_TEMP) {
rc = icp10125_measure(&cfg->i2c, ambient_temp_measurement_cmds,
cfg->ambient_temp_mode, sensor_data, AMBIENT_TEMP_DATA_NUM);
if (rc < 0) {
return rc;
}
data->raw_ambient_temp = sys_get_be16(sensor_data[0].data);
} else {
rc = icp10125_measure(&cfg->i2c, press_measurement_cmds, cfg->press_mode,
sensor_data, PRESS_AND_AMBIENT_TEMP_DATA_NUM);
if (rc < 0) {
return rc;
}
endian_conversion[0] = sensor_data[0].data[0];
endian_conversion[1] = sensor_data[0].data[1];
endian_conversion[2] = sensor_data[1].data[0];
data->raw_press = sys_get_be24(endian_conversion);
data->raw_ambient_temp = sys_get_be16(sensor_data[2].data);
}
return 0;
}
static void icp10125_convert_press_value(struct icp10125_data *data, struct sensor_value *val)
{
sensor_value_from_float(val, icp10125_calc_calibrated_press(data) / 1000.f);
}
static void icp10125_convert_ambient_temp_value(struct icp10125_data *data,
struct sensor_value *val)
{
sensor_value_from_float(val, icp10125_calc_calibrated_ambient_temp(data));
}
static int icp10125_channel_get(const struct device *dev, enum sensor_channel chan,
struct sensor_value *val)
{
struct icp10125_data *data = dev->data;
if (chan == SENSOR_CHAN_AMBIENT_TEMP) {
icp10125_convert_ambient_temp_value(data, val);
} else if (chan == SENSOR_CHAN_PRESS) {
icp10125_convert_press_value(data, val);
} else {
return -ENOTSUP;
}
return 0;
}
static int icp10125_init(const struct device *dev)
{
int rc = icp10125_read_otp(dev);
if (rc < 0) {
return rc;
}
return 0;
}
static DEVICE_API(sensor, icp10125_api_funcs) = {
.sample_fetch = icp10125_sample_fetch,
.channel_get = icp10125_channel_get,
};
#define ICP10125_DEFINE(inst) \
static struct icp10125_data icp10125_drv_##inst; \
static const struct icp10125_dev_config icp10125_config_##inst = { \
.i2c = I2C_DT_SPEC_INST_GET(inst), \
.ambient_temp_mode = DT_INST_ENUM_IDX(inst, temperature_measurement_mode), \
.press_mode = DT_INST_ENUM_IDX(inst, pressure_measurement_mode)}; \
DEVICE_DT_INST_DEFINE(inst, icp10125_init, NULL, &icp10125_drv_##inst, \
&icp10125_config_##inst, POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY, \
&icp10125_api_funcs);
DT_INST_FOREACH_STATUS_OKAY(ICP10125_DEFINE)

View File

@@ -0,0 +1,8 @@
# SPDX-License-Identifier: Apache-2.0
zephyr_library()
zephyr_compile_definitions_ifdef(CONFIG_CPU_HAS_FPU ICP101XX_DRV_USE_FLOATS)
zephyr_library_sources(icp101xx_drv.c)
zephyr_library_include_directories(.)

View File

@@ -0,0 +1,13 @@
# Copyright (c) 2024 TDK Invensense
# ICP101xx High Accuracy, Low Power, Barometric Pressure and Temperature Sensor option
# SPDX-License-Identifier: Apache-2.0
config ICP101XX
bool "ICP101XX Barometric Pressure and Temperature Sensor"
default y
depends on DT_HAS_INVENSENSE_ICP101XX_ENABLED
select I2C
select USE_EMD_ICP101XX
help
Enable driver for ICP101XX barometric pressure/temperature sensors.

View File

@@ -0,0 +1,259 @@
/*
* Copyright (c) 2024 TDK Invensense
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT invensense_icp101xx
#include <math.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/init.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/pm/device.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/logging/log.h>
#include "icp101xx_drv.h"
LOG_MODULE_REGISTER(ICP101XX, CONFIG_SENSOR_LOG_LEVEL);
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 0
#error "ICP101XX driver enabled without any compatible device in devicetree"
#endif
inline void inv_icp101xx_sleep_us(int us)
{
k_sleep(K_USEC(us));
}
static int inv_io_hal_read_reg(void *ctx, uint8_t reg, uint8_t *rbuffer, uint32_t rlen)
{
struct device *dev = (struct device *)ctx;
const struct icp101xx_config *cfg = (const struct icp101xx_config *)dev->config;
return i2c_read_dt(&cfg->i2c, (uint8_t *)rbuffer, rlen);
}
static int inv_io_hal_write_reg(void *ctx, uint8_t reg, const uint8_t *wbuffer, uint32_t wlen)
{
struct device *dev = (struct device *)ctx;
const struct icp101xx_config *cfg = (const struct icp101xx_config *)dev->config;
return i2c_write_dt(&cfg->i2c, (uint8_t *)wbuffer, wlen);
}
static uint8_t get_timeout_ms(enum icp101xx_meas mode)
{
switch (mode) {
case ICP101XX_MEAS_LOW_POWER_T_FIRST:
case ICP101XX_MEAS_LOW_POWER_P_FIRST:
return 2;
case ICP101XX_MEAS_NORMAL_T_FIRST:
case ICP101XX_MEAS_NORMAL_P_FIRST:
return 7;
case ICP101XX_MEAS_LOW_NOISE_T_FIRST:
case ICP101XX_MEAS_LOW_NOISE_P_FIRST:
return 24;
default:
case ICP101XX_MEAS_ULTRA_LOW_NOISE_T_FIRST:
case ICP101XX_MEAS_ULTRA_LOW_NOISE_P_FIRST:
return 95;
}
}
static uint8_t get_conversion_ms(enum icp101xx_meas mode)
{
switch (mode) {
case ICP101XX_MEAS_LOW_POWER_T_FIRST:
case ICP101XX_MEAS_LOW_POWER_P_FIRST:
return 1;
case ICP101XX_MEAS_NORMAL_T_FIRST:
case ICP101XX_MEAS_NORMAL_P_FIRST:
return 5;
case ICP101XX_MEAS_LOW_NOISE_T_FIRST:
case ICP101XX_MEAS_LOW_NOISE_P_FIRST:
return 20;
default:
case ICP101XX_MEAS_ULTRA_LOW_NOISE_T_FIRST:
case ICP101XX_MEAS_ULTRA_LOW_NOISE_P_FIRST:
return 80;
}
}
#ifdef ICP101XX_DRV_USE_FLOATS
#define ATMOSPHERICAL_PRESSURE_KPA ((float)101.325)
#define TO_KELVIN(temp_C) ((float)273.15 + temp_C)
/*
* Constant in altitude formula:
* M*g/R = (0,0289644 * 9,80665 / 8,31432)
* with M the molar mass of air.
* with g the gravitational force acceleration.
* with R the universal gaz constant.
*/
#define HEIGHT_TO_PRESSURE_COEFF ((float)0.03424)
/*
* Constant in altitude formula:
* R / (M*g) = 8,31432 / (0,0289644 * 9,80665)
* with M the molar mass of air.
* with g the gravitational force acceleration.
* with R the universal gaz constant.
*/
#define PRESSURE_TO_HEIGHT_COEFF ((float)29.27127)
/*
* Constant for altitude formula:
* logarithm of pressure at 0m
* ln(101.325)
*/
#define LOG_ATMOSPHERICAL_PRESSURE ((float)4.61833)
float convertToHeight(float pressure_kp, float temperature_C)
{
return PRESSURE_TO_HEIGHT_COEFF * TO_KELVIN(temperature_C) *
(LOG_ATMOSPHERICAL_PRESSURE - logf(pressure_kp));
}
#endif
static int icp101xx_attr_set(const struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr, const struct sensor_value *val)
{
int err = 0;
struct icp101xx_data *data = (struct icp101xx_data *)dev->data;
__ASSERT_NO_MSG(val != NULL);
if (chan == SENSOR_CHAN_PRESS) {
if (attr == SENSOR_ATTR_CONFIGURATION) {
if ((val->val1 >= ICP101XX_MEAS_LOW_POWER_T_FIRST) &&
(val->val1 <= ICP101XX_MEAS_ULTRA_LOW_NOISE_P_FIRST)) {
data->icp_device.measurement_mode = val->val1;
} else {
LOG_ERR("Not supported ATTR value");
return -EINVAL;
}
} else {
LOG_ERR("Not supported ATTR");
return -EINVAL;
}
};
return err;
}
static int icp101xx_sample_fetch(const struct device *dev, const enum sensor_channel chan)
{
struct icp101xx_data *data = (struct icp101xx_data *)dev->data;
int rc = 0;
uint64_t timeout;
if (!((chan == SENSOR_CHAN_AMBIENT_TEMP) || (chan == SENSOR_CHAN_PRESS) ||
(chan == SENSOR_CHAN_ALTITUDE) || (chan == SENSOR_CHAN_ALL))) {
return -ENOTSUP;
}
rc = inv_icp101xx_enable_sensor(&data->icp_device, 1);
/* Compute timeout for the measure */
timeout = k_uptime_get() + get_timeout_ms(data->icp_device.measurement_mode);
/* Initial sleep waiting the sensor proceeds with the measure */
k_sleep(K_MSEC(get_conversion_ms(data->icp_device.measurement_mode)));
do {
k_sleep(K_USEC(200));
rc = inv_icp101xx_get_data(&data->icp_device, &(data->raw_pressure),
&(data->raw_temperature), &(data->pressure),
&(data->temperature));
} while ((rc != 0) && (k_uptime_get() <= timeout));
return rc;
}
static int icp101xx_channel_get(const struct device *dev, enum sensor_channel chan,
struct sensor_value *val)
{
struct icp101xx_data *data = (struct icp101xx_data *)dev->data;
val->val1 = 0;
val->val2 = 0;
if (!((chan == SENSOR_CHAN_AMBIENT_TEMP) || (chan == SENSOR_CHAN_PRESS) ||
(chan == SENSOR_CHAN_ALTITUDE))) {
return -ENOTSUP;
}
/* Zephyr expects kPa while ICP101xx returns Pa */
if (chan == SENSOR_CHAN_AMBIENT_TEMP) {
#ifdef ICP101XX_DRV_USE_FLOATS
sensor_value_from_float(val, data->temperature);
#else
val->val1 = data->temperature >> 4;
val->val2 = (data->temperature % 16) * 1000000 / 16;
#endif
} else if (chan == SENSOR_CHAN_PRESS) {
#ifdef ICP101XX_DRV_USE_FLOATS
sensor_value_from_float(val, data->pressure / 1000);
#else
val->val1 = data->pressure / 1000;
val->val2 = (data->pressure % 1000) * 1000;
#endif
#ifdef ICP101XX_DRV_USE_FLOATS
} else if (chan == SENSOR_CHAN_ALTITUDE) {
float altitude = convertToHeight(data->pressure / 1000, data->temperature);
sensor_value_from_float(val, altitude);
#endif
} else {
return -ENOTSUP;
}
return 0;
}
static int icp101xx_init(const struct device *dev)
{
int rc = 0;
struct icp101xx_data *data = (struct icp101xx_data *)dev->data;
const struct icp101xx_config *cfg = (const struct icp101xx_config *)dev->config;
memset(&(data->icp_device), 0, sizeof(data->icp_device));
data->icp_device.serif.context = (void *)dev;
data->icp_device.serif.read_reg = inv_io_hal_read_reg;
data->icp_device.serif.write_reg = inv_io_hal_write_reg;
/* maximum number of bytes allowed per serial read */
data->icp_device.serif.max_read = 2048;
/* maximum number of bytes allowed per serial write */
data->icp_device.serif.max_write = 2048;
rc = inv_icp101xx_soft_reset(&data->icp_device);
if (rc != 0) {
LOG_ERR("Soft reset error %d", rc);
return rc;
}
inv_icp101xx_init(&data->icp_device);
if (rc != 0) {
LOG_ERR("Init error %d", rc);
return rc;
}
data->icp_device.measurement_mode = cfg->mode;
/* successful init, return 0 */
return 0;
}
static DEVICE_API(sensor, icp101xx_api_funcs) = {
.sample_fetch = icp101xx_sample_fetch,
.channel_get = icp101xx_channel_get,
.attr_set = icp101xx_attr_set,
};
#define ICP101XX_DEFINE(inst) \
static struct icp101xx_data icp101xx_drv_##inst; \
static const struct icp101xx_config icp101xx_config_##inst = { \
.i2c = I2C_DT_SPEC_INST_GET(inst), \
.mode = DT_INST_ENUM_IDX(inst, mode), \
}; \
SENSOR_DEVICE_DT_INST_DEFINE(inst, icp101xx_init, NULL, &icp101xx_drv_##inst, \
&icp101xx_config_##inst, POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY, \
&icp101xx_api_funcs);
DT_INST_FOREACH_STATUS_OKAY(ICP101XX_DEFINE)

View File

@@ -0,0 +1,38 @@
/*
* Copyright (c) 2023 TDK Invensense
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_DRIVERS_SENSOR_ICP101XXX_ICP101XXX_H_
#define ZEPHYR_DRIVERS_SENSOR_ICP101XXX_ICP101XXX_H_
#include <zephyr/types.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/sensor.h>
#include "Icp101xx.h"
#include "Icp101xxSerif.h"
#define ICP101XX_BUS_I2C DT_ANY_INST_ON_BUS_STATUS_OKAY(i2c)
struct icp101xx_data {
int raw_pressure;
int raw_temperature;
#ifdef ICP101XX_DRV_USE_FLOATS
float pressure;
float temperature;
#else
int32_t pressure;
int32_t temperature;
#endif
inv_icp101xx_t icp_device;
};
struct icp101xx_config {
struct i2c_dt_spec i2c;
int mode;
};
#endif